Protein-bound uremic toxins (Indoxyl sulfate [IS] and p-cresyl sulfate [PCS]) are both associated with cardiovascular (CV) and all-cause mortality in subjects with chronic kidney disease (CKD). Possible mechanisms have not been elucidated. In hemodialysis patients, we investigated the relationship between the free form of IS and PCS and 181 CV-related proteins. First, IS or PCS concentrations were checked, and high levels were associated with an increased risk of acute coronary syndrome (ACS) in 333 stable HD patients. CV proteins were further quantified by a proximity extension assay. We examined associations between the free form protein-bound uremic toxins and the quantified proteins with correction for multiple testing in the discovery process. In the second step, the independent association was evaluated by multivariable-adjusted models. We rank the CV proteins related to protein-bound uremic toxins by bootstrapped confidence intervals and ascending p-value. Six proteins (signaling lymphocytic activation molecule family member 5, complement component C1q receptor, C-C motif chemokine 15 [CCL15], bleomycin hydrolase, perlecan, and cluster of differentiation 166 antigen) were negatively associated with IS. Fibroblast growth factor 23 [FGF23] was the only CV protein positively associated with IS. Three proteins (complement component C1q receptor, CCL15, and interleukin-1 receptor-like 2) were negatively associated with PCS. Similar findings were obtained after adjusting for classical CV risk factors. However, only higher levels of FGF23 was related to increased risk of ACS. In conclusion, IS and PCS were associated with several CV-related proteins involved in endothelial barrier function, complement system, cell adhesion, phosphate homeostasis, and inflammation. Multiplex proteomics seems to be a promising way to discover novel pathophysiology of the uremic toxin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884394 | PMC |
http://dx.doi.org/10.1038/s41598-021-83383-x | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
Hemodialysis and bioartificial kidney (BAK), which mimic both physical and biological functions, can significantly impact chronic kidney disease (CKD) patients. Here we report on Hollow fiber membranes (HFMs) with enhanced separation of uremic toxins along with enhanced hemocompatibility and biocompatibility that also promote the growth of kidney cells. The improvement arises from the addition of titanium dioxide (0.
View Article and Find Full Text PDFArtif Organs
January 2025
International Renal Research Institute of Vicenza, Vicenza, Italy.
Background: Patients on maintenance hemodialysis (HD) face complications due to the accumulation of protein-bound uremic toxins, such as advanced glycation end products (AGEs), which contribute to inflammation, oxidative stress, and cardiovascular disease. Conventional HD techniques inadequately remove AGEs. This study evaluates the efficacy of the HA130 hemoadsorption cartridge combined with high-flux HD (HF-HD) in enhancing AGE removal.
View Article and Find Full Text PDFBalkan Med J
January 2025
Department of Clinical Pharmacy, China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, China.
BMC Nephrol
December 2024
Head Doctor of the Dialysis Medical Center LLC, "Nephrocenter", Dovzhenka 3, Kyiv, 03057, Ukraine.
Background: The impact of protein-bound uremic toxins, specifically indoxyl sulfate (IS) on peritoneal dialysis (PD) complications remains controversial. This study aimed to explore the link between serum total IS (tIS) levels, proinflammatory cytokines in serum and peritoneal dialysis effluent (PDE), and PD technique survival.
Methods: In this prospective cohort study, 84 patients were followed up for three years and analyzed.
Toxins (Basel)
December 2024
Nephrology and Renal Transplantation, Hospital Clínic de Barcelona, 08036 Barcelona, Spain.
Pain is a frequent and disturbing symptom among hemodialysis patients. Protein-bound uremic toxins (PBUTs) are related to cardiovascular and overall mortality, and they are difficult to remove with current hemodialysis treatments. The PBUT displacers, such as furosemide, tryptophan, or ibuprofen, may be promising new strategies for improving their clearance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!