Probing the structure-function relationship with neural networks constructed by solving a system of linear equations.

Sci Rep

Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina.

Published: February 2021

AI Article Synopsis

  • Neural networks help us understand brain function by connecting cellular and circuit levels to behavior.
  • The fitting process for neural networks is typically done using optimization algorithms, but this study proposes to reverse that process by analyzing network dynamics to derive network parameters.
  • The method was applied to a sequence memory task, demonstrating that the resulting neural networks showed patterns consistent with experimental data, suggesting a new approach to modeling brain function.

Article Abstract

Neural network models are an invaluable tool to understand brain function since they allow us to connect the cellular and circuit levels with behaviour. Neural networks usually comprise a huge number of parameters, which must be chosen carefully such that networks reproduce anatomical, behavioural, and neurophysiological data. These parameters are usually fitted with off-the-shelf optimization algorithms that iteratively change network parameters and simulate the network to evaluate its performance and improve fitting. Here we propose to invert the fitting process by proceeding from the network dynamics towards network parameters. Firing state transitions are chosen according to the transition graph associated with the solution of a task. Then, a system of linear equations is constructed from the network firing states and membrane potentials, in a way that guarantees the consistency of the system. This allows us to uncouple the dynamical features of the model, like its neurons firing rate and correlation, from the structural features, and the task-solving algorithm implemented by the network. We employed our method to probe the structure-function relationship in a sequence memory task. The networks obtained showed connectivity and firing statistics that recapitulated experimental observations. We argue that the proposed method is a complementary and needed alternative to the way neural networks are constructed to model brain function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884791PMC
http://dx.doi.org/10.1038/s41598-021-82964-0DOI Listing

Publication Analysis

Top Keywords

neural networks
12
structure-function relationship
8
networks constructed
8
system linear
8
linear equations
8
brain function
8
network parameters
8
network
7
networks
5
probing structure-function
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!