Social signals mediate oviposition site selection in Drosophila suzukii.

Sci Rep

Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, USA.

Published: February 2021

The information that female insects perceive and use during oviposition site selection is complex and varies by species and ecological niche. Even in relatively unexploited niches, females interact directly and indirectly with conspecifics at oviposition sites. These interactions can take the form of host marking and re-assessment of prior oviposition sites during the decision-making process. Considerable research has focused on the niche breadth and host preference of the polyphagous invasive pest Drosophila suzukii Matsumura (Diptera: Drosophilidae), but little information exists on how conspecific signals modulate oviposition behavior. We investigated three layers of social information that female D. suzukii may use in oviposition site selection-(1) pre-existing egg density, (2) pre-existing larval occupation, and (3) host marking by adults. We found that the presence of larvae and host marking, but not egg density, influenced oviposition behavior and that the two factors interacted over time. Adult marking appeared to deter oviposition only in the presence of an unmarked substrate. These results are the first behavioral evidence for a host marking pheromone in a species of Drosophila. These findings may also help elucidate D. suzukii infestation and preference patterns within crop fields and natural areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884846PMC
http://dx.doi.org/10.1038/s41598-021-83354-2DOI Listing

Publication Analysis

Top Keywords

host marking
16
oviposition site
12
oviposition
8
site selection
8
drosophila suzukii
8
oviposition sites
8
oviposition behavior
8
egg density
8
host
5
marking
5

Similar Publications

Dodder (Cuscuta spp.), particularly the species Cuscuta chinensis, is a parasitic weed known for its ability to infest a broad spectrum of plant species, thereby significantly affecting the stability and functionality of native ecosystems (Zhang, Xu et al. 2021).

View Article and Find Full Text PDF

Eyespot peek-a-boo: Leaf rolls enhance the antipredator effect of insect eyespots.

J Anim Ecol

December 2024

Field Museum of Natural History, Chicago, Illinois, USA.

Animal colour patterns are often accompanied by specific, synergistic behaviours to most effectively defend prey against visual predators. Given the inherent context-dependence of colour perception, understanding how these colour-behaviour synergies function in a species' natural environment is crucial. For example, refuge-building species create a unique visual environment where most (or all) of the body is obscured unless closely inspected.

View Article and Find Full Text PDF

Microorganisms have co-evolved with a variety of plants and animals, developing complex symbiotic relationships with their hosts and the environment. The diversity of symbionts acquired over time help their hosts to adapt, survive, and evolve more rapidly and efficiently, improving fitness across the lifespan. Understanding these synergistic relationships between humans and their endogenous microbiota may provide valuable information on human physiology and on potential mechanisms associated with the onset of diseases.

View Article and Find Full Text PDF

Background: Adults classified as immunosuppressed have been disproportionately affected by the COVID-19 pandemic. Compared to the immunocompetent, certain patients are at increased risk of suboptimal vaccine response and adverse health outcomes if infected. However, there has been insufficient work to pinpoint where these risks concentrate within the immunosuppressed spectrum; surveillance efforts typically treat the immunosuppressed as a single entity, leading to wide confidence intervals.

View Article and Find Full Text PDF

Biotin (vitamin B) is a crucial cofactor for various metabolic processes and has significant applications in pharmaceuticals, cosmetics, and animal feed. , a well-studied Gram-positive bacterium, presents a promising host for biotin production due to its Generally Recognized as Safe (GRAS) status, robust genetic tractability, and capacity for metabolite secretion. This study focuses on the metabolic engineering of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!