Background: Bone morphogenetic protein 2 (BMP2) is a promising chondrogenic growth factor for cartilage tissue-engineering, but it also induces robust endochondral ossification. Human synovial-derived mesenchymal stromal cells (hSMSCs) have attracted great interest due to their poor potential for differentiation into osteogenic lineages. Smad7 plays a significant in the endochondral ossification. In this study, we explored a new method to amplify the BMP2-induced chondrogenic differentiation of hSMSCs by downregulating Smad7 and applying a cellular scaffold.
Methods: hSMSCs were isolated from human knee joint synovium from 3 donors through adhesion growth. In vitro and in vivo models of the chondrogenic differentiation of hSMSCs were established. Transgenic expression of BMP2 and silencing of Smad7 and Smad7 was achieved by adenoviral vectors. The osteogenic differentiation was detected by alkaline phosphatase staining, alizarin red staining, and RT-PCR analysis of the osteogenic genes RUNX2, Osterix, and Osteocalcin. The chondrogenic differentiation was detected by Alcian blue staining and RT-PCR analysis of the chondrogenic genes SOX9, COL2, and aggrecan. Hypertrophic differentiation was detected by the markers COL10 and MMP13. A subcutaneous stem cell implantation model was established with polyethylene glycol citrate-co-N-isopropylacrylamide (PPCN) scaffolds and athymic nude mice (3/group, 4-6 week-old female) and evaluated by micro-CT, H&E staining, and Alcian blue staining. An immunohistochemistry assay was used to detected COL1 and COL2, and an immunofluorescence assay was used to detect COL10 and MMP13.
Results: These hSMSCs identified by flow cytometry. These hSMSCs exhibited lower osteo-differentiation potential than iMads and C3H10T1/2-cells. When Smad7 was silenced in BMP2-induced hSMSCs, the chondrogenic differentiation genes SOX9, COL2, and aggrecan were enhanced in vitro. Additionally, it silencing Smad7 led to a decrease in the hypertrophic differentiation genes COL10 and MMP13. In subcutaneous stem cell implantation assays, immunofluorescence and immunohistochemical staining demonstrated that silencing Smad7 increased the number of COL2-positive cells and decreased the expression of COL1, COL10, and MMP13.
Conclusion: This study suggests that the application of hSMSCs, cell scaffolds, and silencing Smad7 can potentiate BMP2-induced chondrogenic differentiation and inhibit endochondral ossification. Thus, inhibiting the expression of Smad7 in BMP2-induced hSMSC differentiation may be a new strategy for cartilage tissue-engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885459 | PMC |
http://dx.doi.org/10.1186/s13287-021-02202-2 | DOI Listing |
Curr Stem Cell Res Ther
January 2025
Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
Introduction: Osteoarthritis (OA) is a degenerative joint disease that can affect the many tissues of the joint. There are no officially recognized disease-modifying therapies for clinical use at this time probably due to a lack of complete comprehension of the pathogenesis of the disease. In recent years, emerging regenerative therapy and treatments with stem cells both undifferentiated and differentiated cells have gained much attention as they can efficiently promote tissue repair and regeneration.
View Article and Find Full Text PDFZhonghua Kou Qiang Yi Xue Za Zhi
January 2025
Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology & School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology & Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
To investigate the effects of artificial light at night on the growth of mandibles in mice and its regulatory mechanisms. A mouse model of artificial light at night (night light pollution group) and normal lighting (normal light group) was established by controlling light exposure time, with 4 mice in each group. Micro-CT was employed to analyze the differences in bone quantities of the mandibles between the two groups.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Rehabilitation Medicine, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, China.
Objective: To explore the mechanism of hyperbaric oxygen therapy in inhibiting subchondral bone angiogenesis and delaying the progression of osteoarthritis through the PHD2/HIF-1α signaling pathway.
Methods: Mice were randomly divided into three groups (control group, osteoarthritis group, and hyperbaric oxygen treatment group). The effect of hyperbaric oxygen therapy on osteoarthritis was evaluated using Micro-CT, Safranin O-Fast Green staining, and detection of osteoarthritis inflammation markers (MMP-13, ADAMTS-5, Col2a1, and Aggrecan).
Osteoarthr Cartil Open
March 2025
Department of Regeneration Sciences and Engineering, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
Objective: Osteoarthritis, a degenerative joint disease, requires innovative therapies due to the limited ability of cartilage to regenerate. Since mesenchymal stem cells (MSCs) provide a cell source for chondrogenic cells, we hypothesize that chemicals capable of enhancing the chondrogenic potential of MSCs with transforming growth factor-beta (TGFβ) in vitro may similarly promote chondrogenesis in articular cartilage in vivo.
Design: Chemical compounds that enhance the TGFβ signaling for chondrogenesis were investigated utilizing mesenchymal stem cells derived from human induced pluripotent stem cells.
NPJ Regen Med
January 2025
Department of Orthopedic Surgery, Columbia University, New York, NY, USA.
A high prevalence of rotator cuff tears presents a major clinical challenge. A better understanding of the molecular mechanisms underlying enthesis development and healing is needed for developing treatments. We recently identified hedgehog (Hh)-lineage cells critical for enthesis development and repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!