3D skin models in domestic animals.

Vet Res

ISP, INRAE, Université de Tours, Equipe BioVA, Centre Val de Loire, 37380, Nouzilly, France.

Published: February 2021

The skin is a passive and active barrier which protects the body from the environment. Its health is essential for the accomplishment of this role. Since several decades, the skin has aroused a strong interest in various fields (for e.g. cell biology, medicine, toxicology, cosmetology, and pharmacology). In contrast to other organs, 3D models were mostly and directly elaborated in humans due to its architectural simplicity and easy accessibility. The development of these models benefited from the societal pressure to reduce animal experiments. In this review, we first describe human and mouse skin structure and the major differences with other mammals and birds. Next, we describe the different 3D human skin models and their main applications. Finally, we review the available models for domestic animals and discuss the current and potential applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885517PMC
http://dx.doi.org/10.1186/s13567-020-00888-5DOI Listing

Publication Analysis

Top Keywords

skin models
8
models domestic
8
domestic animals
8
describe human
8
skin
5
animals skin
4
skin passive
4
passive active
4
active barrier
4
barrier protects
4

Similar Publications

Investigating the efficacy of gliclazide encapsulated hydrogel in the preclinical mice model for atopic dermatitis.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, Lucknow, 226002, India.

Atopic dermatitis (AD) is a chronic skin inflammatory ailment commonly observed in young children and adults. Various therapeutic modalities are already explored for mitigation of AD but for prolong application very few modalities are recommended. Considering these challenges, we have successfully developed gliclazide-loaded hydrogels using the physical dispersion method.

View Article and Find Full Text PDF

Recent advances in biomarkers for senescence: Bridging basic research to clinic.

Geriatr Gerontol Int

January 2025

Department of Advanced Senotherapeutics and Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.

In this review, we review the current status of biomarkers for aging and possible perspectives on anti-aging or rejuvenation from the standpoint of biomarkers. Aging is observed in all cells and organs, and we focused on research into senescence in the skin, musculoskeletal system, immune system, and cardiovascular system. Commonly used biomarkers include SA-βgal, cell-cycle markers, senescence-associated secretory phenotype (SASP) factors, damage-associated molecular patterns (DAMPs), and DNA-damage-related markers.

View Article and Find Full Text PDF

Multi-Layered Microneedles Loaded with Microspheres.

AAPS PharmSciTech

January 2025

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia, 30332-0100, U.S.A..

Delivery of therapies into skin is attractive for medical indications including vaccination and treatment of dermatoses but is highly constrained by the stratum corneum barrier. Microneedle (MN) patches have emerged as a promising technology to enable non-invasive, intuitive, and low-cost skin delivery. When combined with biodegradable polymer formulations, MN patches can further enable controlled-release drug delivery without injection.

View Article and Find Full Text PDF

The main advantages of microneedles are precise drug delivery through human skin, minimal tissue damage and painlessness. We conducted structural analysis and skin puncture studies of hollow microneedles using ANSYS for three materials: Hafnium Dioxide (HfO), Polyglycolic acid (PGA) and Polylactic acid (PLA). Firstly, we selected three lengths, three tip diameters and three base diameters to conduct a L(3) orthogonal experiment.

View Article and Find Full Text PDF

Introduction: The unique natural and social environments of East Asia may shape the characteristics of fungal skin diseases. However, there is a notable absence of thorough comparative analyses on this subject.

Methods: This research undertook a comprehensive analysis of the epidemiology and disease burden of fungal dermatoses across five East Asian countries (China, Japan, Republic of Korea, Democratic People's Republic of Korea and Mongolia) via the Global Burden of Disease (GBD) database from 1990 to 2021.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!