Several modern technologies for energy storage and conversion are based on the screening of electric charge on the surface of porous electrodes by ions in an adjacent electrolyte. This so-called electric double layer (EDL) exhibits an intricate interplay with the electrolyte's temperature that was the focus of several recent studies. In one of them, Janssen et al. [Phys. Rev. Lett. 119, 166002 (2017)] experimentally determined the ratio Q/W of reversible heat flowing into a supercapacitor during an isothermal charging process and the electric work applied therein. To rationalize that data, here, we determine Q/W within different models of the EDL using theoretical approaches such as density functional theory (DFT) as well as molecular dynamics simulations. Applying mainly the restricted primitive model, we find quantitative support for a speculation of Janssen et al. that steric ion interactions are key to the ratio Q/W. Here, we identified the entropic contribution of certain DFT functionals, which grants direct access to the reversible heat. We further demonstrate how Q/W changes when calculated in different thermodynamic ensembles and processes. We show that the experiments of Janssen et al. are explained best by a charging process at fixed bulk density or in a "semi-canonical" system. Finally, we find that Q/W significantly depends on parameters such as pore and ion size, salt concentration, and valencies of the cations and anions of the electrolyte. Our findings can guide further heat production measurements and can be applied in studies on, for instance, nervous conduction, where reversible heat is a key element.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0037218 | DOI Listing |
Front Genome Ed
January 2025
State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China.
Primordial germ cells (PGCs) play a crucial role in transmitting genetic information to the next-generation. In chickens, genetically edited PGCs can be propagated and subsequently transplanted into recipient embryos to produce offspring with desired genetic traits. However, during early embryogenesis, the effects of external conditions on PGC migration through the vascular system to the gonads have yet to be explored, which may affect the efficiency of preparing gene-edited chickens.
View Article and Find Full Text PDFForensic Sci Res
December 2024
Córdoba, Argentina.
Unlabelled: The characteristics of commercially available thermochromic ink pens have been studied and described since their appearance in 2006. The wide variety of brands and models now available warrants further study using an expanded sample size, to differentiate the general characteristics from specific characteristics. Herein, the ink strokes of 15 pens purchased in the province of Córdoba, Argentina were studied.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mathematics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
The numerical analysis examines the attributes of magnetohydrodynamic natural convection in a closed cavity including a circular hollow. Because mono and hybrid nanofluids have many applications in thermal engineering and manufacturing, hybrid nanofluids are utilized as the substance within the entire domain. The investigation centers on a closed, trapezoidal-shaped hollow with a heated surface ring.
View Article and Find Full Text PDFCommun Biol
January 2025
Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan.
Monocarpic plants flower only once and then produce seeds. Many monocarpic plants require a cold treatment known as vernalization before they flower. This requirement delays flowering until the plant senses warm temperatures in the spring.
View Article and Find Full Text PDFMicrobiol Res
January 2025
National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China. Electronic address:
The GlnE enzyme, functioning as an adenylyltransferase/adenylyl-removing enzyme, plays a crucial role in reversible adenylylation of glutamine synthetase (GS), which in turn regulates bacterial nitrogen assimilation. Genomic analysis of Azorhizobium caulinodans ORS571 revealed an open reading frame encoding a GlnE protein, whose function in the free-living and symbiotic states remains to be elucidated. A glnE deletion mutant retained high GS activity even under nitrogen-rich conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!