Bioethanol production is an established biotechnological process. Margins are low which prevent a larger scale production of bioethanol. As a large part of the production cost is due to the feedstock, the use of low value unsterile feedstocks fermented by microbial communities will enable a more cost-competitive bioethanol production. To select for high yield ethanol producing communities, three selective conditions are proposed: acid washing of the cells after fermentation, a low pH (<5) during the fermentation and microaerobiosis at the start of the fermentation. Ethanol producers, such as Zymomonas species and yeasts, compete for carbohydrates with volatile fatty acid and lactic acid producing bacteria. Creating effective consortia of lactic acid bacteria and homo-ethanol producers at low pH will lead to robust and competitive ethanol yields and titres. A conceptual design of an ecology-based bioethanol production process is proposed using food waste to produce bioethanol, electricity, digestate and heat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.copbio.2021.01.016 | DOI Listing |
J Chem Inf Model
January 2025
Department of Computer Science and Technology, Shantou University, Shantou 515063, China.
The human microbiota may influence the effectiveness of drug therapy by activating or inactivating the pharmacological properties of drugs. Computational methods have demonstrated their ability to screen reliable microbe-drug associations and uncover the mechanism by which drugs exert their functions. However, the previous prediction methods failed to completely exploit the neighborhood topologies of the microbe and drug entities and the diverse correlations between the microbe-drug entity pair and the other entities.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
As an important receptor in a host's immune and metabolic systems, NOD1 is usually activated by Gram-negative bacteria having -diaminopimelic acid (-DAP) in their peptidoglycan (PGN). But some atypical Gram-positive bacteria also contain -DAP in their PGN, giving them the potential to activate NOD1. The prevalence of -DAP-type Gram-positive bacteria in the gut, however, remains largely unknown.
View Article and Find Full Text PDFACS Nano
January 2025
Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
Orally targeting nanostrategies of multiple nutraceuticals have attracted increasing attention in ulcerative colitis (UC) therapy for superior patient compliance, cost-effectiveness, and biocompatibility. However, the actual targeting delivery and bioefficacy of nutraceuticals are extremely restricted by their poor solubility, interior gastrointestinal retention, and base permeability. Herein, we developed controllable colon-targeting nanoparticles (NPs) composed of a quaternary ammonium chitosan (HTCC) shell and succinic acid-modified γ-cyclodextrin (SACD) core for precise UC treatment.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
Plant-based foods with low methionine contents have gained increasing interest for their potential health benefits, including neuroprotective effects. Methionine restriction (MR) linked to a plant-based diet has been shown to mitigate neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that involve the gut microbiota. In this study, a 16-week MR diet (0.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany.
Unlabelled: The rising atmospheric concentration of CO is a major concern to society due to its global warming potential. In soils, CO-fixing microorganisms are preventing some of the CO from entering the atmosphere. Yet, the controls of dark CO fixation are rarely studied .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!