Background: Ciliary neurotrophic factor (CNTF), which is a neural peptide, has been reported to confer cardioprotective effects. However, whether CNTF-based gene therapy could prevent cardiac remodelling remains incompletely clear. In this study, we used adeno-associated viral vector serotype 9 (AAV9)-based cardiac gene therapy to test the effects of CNTF overexpression on adverse ventricular remodelling in angiotensin II (Ang II)-infused mice.
Methods: First, AAV9-EGFP and AAV9-CNTF constructs were generated with virus concentration at 5 × 10 vg/ml. Next, postnatal (P3-P10) mice with C57BL/6J background were administered with 5 × 10 vg of AAV9 recombinant genome diluted in 50 μl of saline, and delivered through intraperitoneal injection. Implantation of osmotic minipumps was performed in 8-week-old male mice and human Ang II solution was administrated in the mice subcutaneously for 14 days through the pumps. Finally, we evaluated the effects of CNTF overexpression on mouse cardiac function, hypertrophy and fibrosis, as well as investigated the possible mechanisms.
Results: Our data showed that CNTF overexpression in mouse cardiomyocytes prevents cardiac hypertrophy and fibrosis induced by chronic Ang II stimulation. Mechanistic study found that CNTF overexpression upregulated NFE2-related factor 2 (Nrf2) antioxidant pathway, coupled with decreased ROS level in the cardiac tissues. Additionally, inflammatory cytokines were found to be reduced upon cardiac CNTF overexpression in response to chronic Ang II stimulation.
Conclusions: Altogether, these results provide further evidence that CNTF can alleviate the condition of cardiac remodelling induced by chronic Ang II stimulation. Therefore, our results suggest a potential therapeutic role of CNTF in cardiac pathological remodelling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2021.01.111 | DOI Listing |
Cell Death Dis
December 2024
Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
Regeneration of injured central nervous system (CNS) axons is highly restricted, leading to permanent neurological deficits. The myristoylated alanine-rich C-kinase substrate (MARCKS) is a membrane-associated protein kinase C (PKC) substrate ubiquitously expressed in eukaryotic cells, plays critical roles in development, brain plasticity, and tissues regeneration. However, little is known about the role of Marcks in CNS axon regeneration.
View Article and Find Full Text PDFJ Mol Histol
October 2024
Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, 1088 HaiYuan middle road, Kunming, 650106, Yunnan, China.
Facial nerve is an integral part of peripheral nerve. Schwann cells are important microglia involved in the repair and regulation of facial nerve injury. LncRNA growth arrest‑specific transcript 5 (GAS5) is involved in the behavioral regulation of Schwann cell and the regeneration of peripheral nervous system.
View Article and Find Full Text PDFExp Cell Res
July 2024
Department of Endocrinology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, 200060, China. Electronic address:
Elevated homocysteine (Hcy) levels have been recognized as significant risk factor for cardiovascular and cerebrovascular diseases, closely related to endothelial injury. While expression of Ciliary Neurotrophic Factor (CNTF) significantly increases during Hcy-induced vascular endothelial cell injury, the precise molecular pathways through which CNTF operates remain to be clarified. To induce vascular endothelial cell injury, human umbilical vein endothelial cells (HUVECs) were treated with Hcy.
View Article and Find Full Text PDFRegen Ther
December 2023
College of Life Science, Anhui Medical University, Hefei, 230032, PR China.
Background Aims: Spinal cord injury (SCI) is one of the most complex and destructive diseases of the nervous system, which can lead to permanent loss of tactile perception. But existing treatment methods have limited effects. To establish a novel method that may be therapeutic in repairing the injured spinal cord, gene-modified dental pulp stem cells (DPSCs) were injected in situ.
View Article and Find Full Text PDFMol Brain
July 2023
Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland.
The 18 kDa translocator protein (TSPO) is a classical marker of neuroinflammation targeted for in vivo molecular imaging. Microglial cells were originally thought to be the only source of TSPO overexpression but astrocytes, neurons and endothelial cells can also up-regulate TSPO depending on the pathological context. This study aims to determine the cellular origin of TSPO overexpression in a simplified model of neuroinflammation and to identify the molecular pathways involved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!