Lipophilic compounds in garlic decrease the toxicity of methylmercury by forming sulfur adducts.

Food Chem Toxicol

Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. Electronic address:

Published: April 2021

Garlic (Allium sativum L.) contains numerous sulfur compounds. We have previously found that reactive sulfur species such as glutathione persulfide, glutathione polysulfide, protein-bound persulfides, and hydrogen sulfide can bind to methylmercury to give bismethylmercury sulfide, which is less toxic than methylmercury. It was not clear, however, whether such reactive sulfur species are present in garlic. The aim of the study presented here was to determine whether garlic contains reactive sulfur species that can bind to methylmercury. We extracted garlic with organic solvents and then performed silica gel column chromatography to separate constituents that could cause bismethylmercury sulfide to form. We found numerous garlic constituents could bind to methylmercury to form bismethylmercury sulfide. A hexane extract of garlic decreased methylmercury cytotoxicity in vitro and body weight loss in mice. The results suggest that ingesting garlic may decrease methylmercury toxicity by causing the formation of sulfur adducts that inhibit adverse reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2021.112061DOI Listing

Publication Analysis

Top Keywords

reactive sulfur
12
sulfur species
12
bind methylmercury
12
bismethylmercury sulfide
12
garlic
8
garlic decrease
8
sulfur adducts
8
methylmercury
7
sulfur
6
lipophilic compounds
4

Similar Publications

Reactive oxygen, nitrogen and sulfur species (RONSS) collectively encompasses a variety of energetically dynamic entities that emerge as inherent characteristics of aerobic life. This broad category includes reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS). A conundrum arises from the indispensable role of RONSS in redox signalling, while its overproduction in the mitochondria poses deleterious effects.

View Article and Find Full Text PDF

Herein, we disclose a novel, mild, transition-metal-free approach to synthesizing diversely functionalized isothiocyanates from the corresponding isocyanide precursors, achieving high to excellent yields (up to 97%). The current method sheds light on the reactivity of pyridinium 1,4-zwitterionic thiolates as an unprecedented sulfur source strikingly distinct from their previously known reactivity in ionic annulation reactions, showcasing an innovative approach to organic synthesis.

View Article and Find Full Text PDF

Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.

View Article and Find Full Text PDF

Weak Covalent Bonds and Mechanochemistry for Synergistic Self-Strengthening of Elastomers.

J Am Chem Soc

January 2025

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, West Campus, 2# Linggong Road, Dalian 116024, China.

The macroscopic properties of elastomers are intimately linked to their molecular reactivity and mechanisms. Here, we propose a new strategy for designing strengthening materials based on the synergy of weak covalent bonds and mechanochemistry. After mechanical treatment, the failure strength and toughness of the elastomer increased from 2.

View Article and Find Full Text PDF

Chalcogenide exchange reactions are an important class of bimolecular nucleophilic substitution reactions (SN2) involving sulfur and selenium species as nucleophile, central atom, and/or leaving group, which are fundamental throughout redox biology and metabolism. While thiol-disulfide exchange reactions have been deeply investigated, those involving selenium are less understood, especially with regards to the polarised selenenyl sulfides RSe-SR' even though the directed reactivity of selenenyl sulfides is biologically crucial for selenoenzymes such as thioredoxin reductase (TrxR) and glutathione peroxidase (GPx). Synthetic methods to create asymmetric selenenyl sulfides with high regiochemical purity only emerged over the last five years; this functional group has already demonstrated powerful applications to cell biology, through probes for molecular imaging (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!