Of mice and monkeys: Somatosensory processing in two prominent animal models.

Prog Neurobiol

Department of Organismal Biology and Anatomy, University of Chicago, United States; Committee on Computational Neuroscience, University of Chicago, United States; Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, United States. Electronic address:

Published: June 2021

Our understanding of the neural basis of somatosensation is based largely on studies of the whisker system of mice and rats and the hands of macaque monkeys. Results across these animal models are often interpreted as providing direct insight into human somatosensation. Work on these systems has proceeded in parallel, capitalizing on the strengths of each model, but has rarely been considered as a whole. This lack of integration promotes a piecemeal understanding of somatosensation. Here, we examine the functions and morphologies of whiskers of mice and rats, the hands of macaque monkeys, and the somatosensory neuraxes of these three species. We then discuss how somatosensory information is encoded in their respective nervous systems, highlighting similarities and differences. We reflect on the limitations of these models of human somatosensation and consider key gaps in our understanding of the neural basis of somatosensation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8096687PMC
http://dx.doi.org/10.1016/j.pneurobio.2021.102008DOI Listing

Publication Analysis

Top Keywords

monkeys somatosensory
8
animal models
8
understanding neural
8
neural basis
8
basis somatosensation
8
mice rats
8
rats hands
8
hands macaque
8
macaque monkeys
8
human somatosensation
8

Similar Publications

Imagine going left versus imagine going right: whole-body motion on the lateral axis.

Sci Rep

December 2024

Creative Robotics Lab, UNSW, Sydney, 2021, Australia.

Unlike the conventional, embodied, and embrained whole-body movements in the sagittal forward and vertical axes, movements in the lateral/transversal axis cannot be unequivocally grounded, embodied, or embrained. When considering motor imagery for left and right directions, it is  assumed that participants have underdeveloped representations due to a lack of familiarity with moving along the lateral axis. In the current study, a 32 electroencephalography (EEG) system was used to identify the oscillatory neural signature linked with lateral axis motor imagery.

View Article and Find Full Text PDF

Objective: This qualitative study aimed to explore patients' experiences with a novel treatment approach for endometriosis-associated pain, termed 'sinosomatics'. Specifically, it sought to understand women's experiences of the treatment and its components, the effects of the treatment on biological, psychological, and social levels, and how the women interpreted the changes they experienced.

Methods: We conducted ten semi-structured interviews with patients, who had undergone the complementary treatment for endometriosis-associated pain.

View Article and Find Full Text PDF

Intracortical microstimulation (ICMS) is a method for restoring sensation to people with paralysis as part of a bidirectional brain-computer interface (BCI) to restore upper limb function. Evoking tactile sensations of the hand through ICMS requires precise targeting of implanted electrodes. Here we describe the presurgical imaging procedures used to generate functional maps of the hand area of the somatosensory cortex and subsequent planning that guided the implantation of intracortical microelectrode arrays.

View Article and Find Full Text PDF

Background: Magnetic resonance imaging may suggest spinal cord compression and structural lesions in degenerative cervical myelopathy (DCM) but cannot reveal functional impairments in spinal pathways. We aimed to assess the value of contact heat evoked potentials (CHEPs) in addition to MRI and hypothesized that abnormal CHEPs may be evident in DCM independent of MR-lesions and are related to dynamic mechanical cord stress.

Methods: Individuals with DCM underwent neurologic examination including segmental sensory (pinprick, light touch) and motor testing.

View Article and Find Full Text PDF

Long-term effects of concussion on attention, sensory gating and motor learning.

Exp Brain Res

December 2024

Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Ave. W, Waterloo, ON, N2L 3G1, Canada.

The current work aimed to understand the behavioral manifestations that result from disruptions to the selective facilitation of task-relevant sensory information at early cortical processing stages in those with a history of concussion. A total of 40 participants were recruited to participate in this study, with 25 in the concussion history group (Hx) and 15 in the control group (No-Hx). Somatosensory-evoked potentials (SEPs) were elicited via median nerve stimulation while subjects performed a task that manipulated their focus of attention toward or away from proprioceptive cues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!