A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

IR photofragmentation of the phenyl cation: spectroscopy and fragmentation pathways. | LitMetric

IR photofragmentation of the phenyl cation: spectroscopy and fragmentation pathways.

Phys Chem Chem Phys

Van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD, Amsterdam, The Netherlands. and Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands.

Published: February 2021

We present the gas-phase infrared spectra of the phenyl cation, phenylium, in its perprotio (C6H5+) and perdeutero (C6D5+) forms, in the 260-1925 cm-1 (5.2-38 μm) spectral range, and investigate the observed photofragmentation. The spectral and fragmentation data were obtained using Infrared Multiple Photon Dissociation (IRMPD) spectroscopy within a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR MS) located inside the cavity of the free electron laser FELICE (Free Electron Laser for Intra-Cavity Experiments). The 1A1 singlet nature of the phenylium ion is ascertained by comparison of the observed IR spectrum with DFT calculations, using both harmonic and anharmonic frequency calculations. To investigate the observed loss of predominantly [2C,nH] (n = 2-4) fragments, we explored the potential energy surface (PES) to unravel possible isomerization and fragmentation reaction pathways. The lowest energy pathways toward fragmentation include direct H elimination, and a combination of facile ring-opening mechanisms (≤2.4 eV), followed by elimination of H or CCH2. Energetically, all H-loss channels found are more easily accessible than CCH2-loss. Calculations of the vibrational density of states for the various intermediates show that at high internal energies, ring opening is thermodynamically the most advantageous, eliminating direct H-loss as a competing process. The observed loss of primarily [2C,2H] can be explained through entropy calculations that show favored loss of [2C,2H] at higher internal energies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp05554aDOI Listing

Publication Analysis

Top Keywords

phenyl cation
8
investigate observed
8
free electron
8
electron laser
8
observed loss
8
internal energies
8
loss [2c2h]
8
photofragmentation phenyl
4
cation spectroscopy
4
fragmentation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!