Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Quantifying the relative contributions of microbial species to ecosystem functioning is challenging, because of the distinct mechanisms associated with microbial phylogenetic and metabolic diversity. We constructed bacterial communities with different diversity traits and employed exoenzyme activities (EEAs) and carbon acquisition potential (CAP) from substrates as proxies of bacterial functioning to test the independent effects of these two aspects of biodiversity. We expected that metabolic diversity, but not phylogenetic diversity would be associated with greater ecological function. Phylogenetically relatedness should intensify species interactions and coexistence, therefore amplifying the influence of metabolic diversity. We examined the effects of each diversity treatment using linear models, while controlling for the other, and found that phylogenetic diversity strongly influenced community functioning, positively and negatively. Metabolic diversity, however, exhibited negative or non-significant relationships with community functioning. When controlling for different substrates, EEAs increased along with phylogenetic diversity but decreased with metabolic diversity. The strength of diversity effects was related to substrate chemistry and the molecular mechanisms associated with each substrate's degradation. EEAs of phylogenetically similar groups were strongly affected by within-genus interactions. These results highlight the unique flexibility of microbial metabolic functions that must be considered in further ecological theory development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsec/fiab017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!