Oxidopyrylium [5 + 2] cycloaddition reactions are powerful strategies for constructing complex bicyclic architectures. However, intermolecular cycloadditions of oxidopyrylium ylides are limited due to competing dimerization processes; consequently, high equivalents of dipolarophiles are often used to help intercept the ylide prior to dimerization. Recent studies by our lab have revealed that oxidopyrylium dimers derived from 3-hydroxy-4-pyrones are capable of reverting back to ylides and as a result can be used as clean oxidopyrylium ylide sources. The following manuscript investigates intermolecular cycloaddition reactions between 3-hydroxy-4-pyrone-derived oxidopyrylium dimers and stoichiometrically equivalent ratios of alkyne dipolarophiles under thermal conditions. With certain reactive alkynes, pure cycloadducts can be obtained following a simple evaporation of the solvent, which is a benefit of the completely atom-economical reaction conditions. However, when less reactive alkynes are used the yields suffer due to a competing dimer rearrangement. Finally, when reactive-yet-volatile alkynes are used, such as methyl propiolate, competing 2:1 ylide/alkyne cycloadducts are observed. Intriguingly, these complex cycloadducts, which can be obtained in good yields from the pure cycloadducts, form with high regio- and stereoselectivities; however, both the regio-and stereoselectivities differ remarkably based on the source of the oxidopyrylium ylide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8061303 | PMC |
http://dx.doi.org/10.1021/acs.joc.0c02655 | DOI Listing |
Org Lett
June 2021
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
The first total synthesis of (±)-jujuyane, a cyclooctanoid natural product, was accomplished from a (5 + 3) dimerization product of oxidopyrylium ylide that forms the cyclooctanoid core structure along with inherited stereochemical bias. Selective functional group modifications of the highly oxygenated dimeric structure, followed by the tactical functional group manipulation around the eight-membered carbocyclic core, enabled the total synthesis of (±)-jujuyane, which will serve a guide for future applications of oxidopyrylium dimers to the natural product total synthesis.
View Article and Find Full Text PDFJ Org Chem
March 2021
Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States.
Oxidopyrylium [5 + 2] cycloaddition reactions are powerful strategies for constructing complex bicyclic architectures. However, intermolecular cycloadditions of oxidopyrylium ylides are limited due to competing dimerization processes; consequently, high equivalents of dipolarophiles are often used to help intercept the ylide prior to dimerization. Recent studies by our lab have revealed that oxidopyrylium dimers derived from 3-hydroxy-4-pyrones are capable of reverting back to ylides and as a result can be used as clean oxidopyrylium ylide sources.
View Article and Find Full Text PDFJ Org Chem
November 2019
Department of Chemistry , Brooklyn College, The City University of New York, Brooklyn , New York 11210 , United States.
Oxidopyrylium ylides are useful intermediates in synthetic organic chemistry because of their capability of forming structurally complex cycloadducts. They can also self-dimerize via [5 + 3] cycloaddition, which is an oft-reported side reaction that can negatively impact [5 + 2] cycloadduct yields and efficiency. In select instances, these dimers can be synthesized and used as the source of oxidopyrylium ylide, although the generality of this process remains unclear.
View Article and Find Full Text PDFJ Org Chem
May 2019
School of Chemistry and Molecular Biosciences , The University of Queensland, St Lucia , 4067 Queensland , Australia.
By drawing analogies from the dimerization of cyclopentadiene, a novel reaction pathway bifurcation is uncovered in the cycloaddition of oxidopyrylium ylides and butadiene. Analysis of the potential energy surface (at the M06-2X/6-311+G(d,p) level of theory) in combination with Born-Oppenheimer molecular dynamics simulations (M06-2X/6-31+G(d)) demonstrate that both the (4 + 3)- and (5 + 2)-cycloaddition products are accessed from the same transition state. Key indicators of a pathway bifurcation (asynchronous bond formation, and a second transition state for the interconversion of the products) are also observed.
View Article and Find Full Text PDFOrg Lett
December 2017
Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States.
The first catalytic enantioselective [5 + 2] dipolar cycloaddition of a 3-hydroxy-4-pyrone-derived oxidopyrylium ylide is described. These studies leveraged the recently recognized ability of oxidopyrylium dimers to serve as the source of ylide, which was found to be key to increasing yields and achieving enantiomeric excesses up to 99%. General reaction conditions were identified for an array of α,β-unsaturated aldehyde dipolarophiles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!