Radiation-enhanced precipitation (REP) of Cu in Fe-Cu alloys results in hardening and degradation of the mechanical properties. By combining the CALPHAD-based free energy for phase-field modeling, and radiation-enhanced diffusion (RED) with neutron irradiating energetic particle, the precipitation of Cu in binary Fe-Cu alloys is studied under different dose rates, concentrations, and temperatures. Rate theory (RT) provides the RED that serves as an input parameter for the phase-field simulation to capture the morphology of the precipitates. The REP results agree with the theoretical predictions: the increase in the dose rates increases the concentration of defects, and accelerates the kinetics of precipitation. The simulation predicts the stability of the precipitates even under high damage rates. The increase in radius is achieved for high damage rates. Precipitate dissolution is observed to be dependent on the combination of dose rate, concentration, and temperature. The work also outlines the limitations of the model and the potential future improvements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp05777k | DOI Listing |
Langmuir
January 2025
School of Energy and Power Engineering, Shandong University, Jinan 250061, China.
Fluid displacement within layered porous media is more complex than in nonlayered ones. Most of the previous studies placed a focus on the porous media with layerings perpendicular to the flow direction, and the effects of pore topology were often ignored. Therefore, this study aims to reveal the flow physics in porous media with layering parallel to the flow direction by accounting for the specific pore topology.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Fürther Strasse 248, 90429 Nürnberg, Germany.
Sci Bull (Beijing)
December 2024
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China. Electronic address:
NPJ Comput Mater
December 2024
Institute of Applied Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 5, 91058 Erlangen, Germany.
Large deformations of soft materials are customarily associated with strong constitutive and geometrical nonlinearities that originate new modes of fracture. Some isotropic materials can develop strong fracture anisotropy, which manifests as modifications of the crack path. Sideways cracking occurs when the crack deviates to propagate in the loading direction, rather than perpendicular to it.
View Article and Find Full Text PDFSmall
December 2024
Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, Guangxi Key Laboratory of Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
Advancements in pulsed electronic power systems depend significantly on high-performance dielectric energy storage ceramics. Lead-free NaNbO-based energy-storage ceramics are important materials for next-generation pulsed power capacitors owing to their large polarization and bandgaps. However, the high energy loss caused by the antiferroelectric-ferroelectric phase transition leads to low recoverable energy storage density and efficiency, which hinders its practical application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!