Studies of ultrafast relaxation of molecular chromophores are complicated by the fact that most chromophores of biological and technological importance are rather large molecules and are strongly affected by their environment, either solvent or a protein cage. Here we present an approach which allows us to follow transient electronic structure of complex photoexcited molecules. We use the method of time-resolved photoelectron spectroscopy in solution to follow relaxation of two prototypical aqueous chromophores, Methyl Orange and Metanil Yellow, both of which are aminoazobenzene derivatives. Using excitation by 400 nm laser pulses and ionization by wavelength-selected 46.7 nm XUV pulses from high-order harmonic generation we follow relaxation of both molecules via the dark S1 state. The photoelectron spectra yield binding energies of both ground and excited states. We combine the experimental results with surface hopping time-dependent density functional theory (TDDFT) calculations employing B3LYP+D3 and ωB97X-D functionals. The results demonstrate that the method is generally suitable for description of ultrafast dynamics in these molecules and can recover absolute binding energies observed in the experiment. The B3LYP+D3 functional appears to be better suited for these systems, especially in the case of Metanil Yellow, where it indicates the importance of an intramolecular charge transfer state. Our results pave the way towards quantitative understanding of evolving electronic structure in photo-induced relaxation processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0fd00111b | DOI Listing |
J Colloid Interface Sci
December 2024
Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
A novel metal-organic framework (MOF), (Cu-S)MOF, with a copper-sulfur planar structure was applied to photocatalytic H production application. (Cu-S)MOF@ZnS nanocomposite was synthesized using a microwave-assisted hydrothermal approach. The formation of (Cu-S)MOF and wurtzite ZnS in the composite nanoparticles was analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FESEM), and high-resolution transmission electron microscope (HRTEM).
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea.
A photodetachment and photoelectron spectroscopic study by employing a cryogenically cooled ion trap combined with a velocity-map imaging setup has been carried out to unravel the vibrational structures and autodetachment dynamics of the dipole-bound states (DBSs) of -, -, and -methylphenolate anions (-, -, and -CHPhO). The electron binding energy of the DBS increases monotonically with the increase of the neutral dipole moment to give respective values of 66 ± 15, 123 ± 18, or 154 ± 14 cm for the -, -, or -isomer. The different electron-donating effects of the methyl moieties in the three geometrically different isomers seem to be reflected in the experiment.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
We describe the design and performance of a magnetic bottle electron spectrometer (MBES) for high-energy electron spectroscopy. Our design features a 2 m long electron drift tube and electrostatic retardation lens, achieving sub-electronvolt (eV) electron kinetic energy resolution for high energy (several hundred eV) electrons with a close to 4π collection solid angle. A segmented anode electron detector enables the simultaneous collection of photoelectron spectra in high resolution and high collection efficiency modes.
View Article and Find Full Text PDFFront Chem
December 2024
School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China.
Studies on cerium oxo clusters (CeOCs) are not only significant for understanding the redox and hydrolysis behaviors of Ce(III/IV) ions but also crucial for the rational synthesis of novel clusters and nanoceria with specific Ce(III)/Ce(IV) ratios. Here, two sets of reactions were conducted using cerium nitrate and HO-oxidized cerium nitrate, resulting in the formation of two distinct mixed-valent CeOCs [Ce Ce O(OH)(PhCO)(DMF)] (Ce) and [Ce Ce O(OH)(PhCO)(DMF)] (Ce). These two clusters exhibit different structures and Ce(III)/Ce(IV) ratios, demonstrating the critical role of cerium oxidation states and the occurrence of redox reactions in cluster formation.
View Article and Find Full Text PDFAdv Mater
December 2024
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China.
Understanding charge carrier transfer at heterojunction interfaces is critical for advancing solar energy conversion technologies. This study utilizes continuous wave (CW), pulse, and time-resolved (TR) electron paramagnetic resonance (EPR) spectroscopy to explore the radical species formed at the TAPA (tris(4-aminophenyl)amine)-PDA (Terephthaldicarboxaldehyde)/ZnInS (TP/ZIS) heterojunction interface. CW and pulse EPR identify stable radical defects localized near the interface, accessible to water molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!