Protonolysis of β-diketiminato (nacnac) rare-earth metal bis-alkyl complexes LLnR(THF) (Ln = Y and Lu) with 2 equiv of PhPNHPh or PhPCHNHPh afforded the bis-amido complexes LY(PhPNPh) and LLn(PhPCHNPh) (Ln = Y and Lu). Metalation of the latter complexes with 1 equiv of Ni(COD) led to the isolation of unusual heterobimetallic Ni(II)-Ln(III) complexes formed via P-C bond cleavage of one [PhPCHNPh] ligand. Notably, both the imine PhN═CH and phosphide PhP fragments from the P-C bond cleavage were trapped in the Ni(II)-Ln(III) core with a relatively weak interaction between the two metal centers. The Ni(II)-Y(III) complex have exhibited versatile reactivity, such as coordination of isonitrile to the Ni(II) center, insertion of nitrile with the coordinated imine, and ring-opening of the epoxide by nucleophilic attack from the phosphide group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.0c03675 | DOI Listing |
Dalton Trans
January 2025
Institut für Anorganische Chemie. Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.
Compared to aziridines, azaphosphiridines, which formally result from the replacement of a carbon atom by phosphorus, have been much less studied. In this work, accurate values for one of the most prominent properties, the ring strain energy (RSE), have been theoretically examined for a wide range of azaphosphiridine derivatives. Strongly related aspects of interest for developing the use of azaphosphiridines in heteroatom and polymer chemistry are ring opening reactions and polymerisations, the latter facilitated by their significantly high RSE.
View Article and Find Full Text PDFDalton Trans
December 2024
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Jiangwan Campus, Fudan University, Shanghai 200438, China.
The phosphaguanidinate rare-earth-metal bis(aminobenzyl) complexes [(PhP)C(NCHPr-2,6)]Ln(CHCH NMe-) (Ln = Y(1-Y) and Lu(1-Lu)) were synthesized by the protonolysis of (PhP)[C(NHR)(NR)] (R = 2,6-(Pr)CH) with Ln(CHCHNMe-) (Ln = Y and Lu). Interestingly, the ring-opening rearrangement product [-MeNCHCHC(NCHPr-2,6)]Lu(CHCHNMe-)[O(CH)PPh] (2) was obtained when the acid-base reaction was carried out in THF solution at 60 °C for 36 h. Additionally, the trinuclear homometallic yttrium multimethyl/methylidene complex {[(PhP)C(NCHPr-2,6)]Y(μ-Me)}(μ-Me)(μ-CH) (3) was synthesized by the treatment of 1-Y with AlMe (2 equiv.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan.
Versatile P-N and P-O bond-forming reactions by an umpolung approach using air- and moisture-stable hydroxymethylphosphine sulfides were developed. Phosphine sulfides containing multiple hydroxymethyl groups could undergo sequential transformations combining P-N and P-O as well as P-C bond formations, providing a novel protocol for the synthesis of a variety of organophosphorus(V) compounds with P-N and P-O bonds.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India.
A series of sulfonamido-substituted oxime-ethers have been synthesized by the reaction of donor-acceptor aziridines with aldo- and keto-oximes through C-C bond cleavage. Nucleophilic attack by an oxime hydroxyl group on the -generated azomethine ylide rather than the routine cycloaddition reaction draws the novelty of the developed methodology. Selective protection of the oxime hydroxyl group is observed in the presence of phenolic -OH, which made the protocol enriched.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Chemistry, Sidho-Kanho-Birsha University, Purulia 723104, W.B., India.
Distinctive, green, innovative, and well-organized photoinduced (metal- or photocatalyst-free) regioselective decarbonylative and decarboxylative C-O bond functionalization protocols to access aryl 2-aminobenzoates and 2-substituted benzoxazinone derivatives in excellent yields have been devised. These are achieved through the chemoselective scission of isatoic anhydride with ketones, diaryliodonium triflate, nitroalkene, phthalazinone, and phenol derivatives, which, in turn, served as the representative "electrophilic and nucleophilic" coupling partners. Control experiments and DFT calculations reveal that electrophilic radical-bearing coupling partners specifically follow the decarbonylation pathway, while nucleophilic radical-bearing conjugates facilitate the decarboxylation process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!