This research is motivated by a periodontal disease dataset that possesses certain special features. The dataset consists of clustered current status time-to-event observations with large and varying cluster sizes, where the cluster size is associated with the disease outcome. Also, heavy censoring is present in the data even with long follow-up time, suggesting the presence of a cured subpopulation. In this paper, we propose a computationally efficient marginal approach, namely the cluster-weighted generalized estimating equation approach, to analyze the data based on a class of semiparametric transformation cure models. The parametric and nonparametric components of the model are estimated using a Bernstein-polynomial based sieve maximum pseudo-likelihood approach. The asymptotic properties of the proposed estimators are studied. Simulation studies are conducted to evaluate the performance of the proposed estimators in scenarios with different degree of informative clustering and within-cluster dependence. The proposed method is applied to the motivating periodontal disease data for illustration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.8910DOI Listing

Publication Analysis

Top Keywords

current status
8
cluster size
8
class semiparametric
8
semiparametric transformation
8
transformation cure
8
cure models
8
periodontal disease
8
proposed estimators
8
marginal analysis
4
analysis current
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!