Discovering the Latest Scientific Pathways on Tissue Spheroids: Opportunities to Innovate.

Int J Bioprint

Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, CP 64849, Monterrey, N.L., Mexico.

Published: January 2021

Tissue spheroids consist of a three-dimensional model of cells which is capable of imitating the complicated composition of healthy and unhealthy human tissue. Due to their unique properties, they can bring innovative solutions to tissue engineering and regenerative medicine, where they can be used as building blocks for the formation of organ and tissue models used in drug experimentation. Considering the rapid transformation of the health industry, it is crucial to assess the research dynamics of this field to support the development of innovative applications. In this research, a scientometric analysis was performed as part of a Competitive Technology Intelligence methodology, to determine the main applications of tissue spheroids. Papers from Scopus and Web of Science published between 2000 and 2019 were organized and analyzed. In total, 868 scientific publications were identified, and four main categories of application were determined. Main subject areas, countries, cities, authors, journals, and institutions were established. In addition, a cluster analysis was performed to determine networks of collaborations between institutions and authors. This article provides insights into the applications of cell aggregates and the research dynamics of this field, which can help in the decision-making process to incorporate emerging and innovative technologies in the health industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875053PMC
http://dx.doi.org/10.18063/ijb.v7i1.331DOI Listing

Publication Analysis

Top Keywords

tissue spheroids
12
health industry
8
dynamics field
8
analysis performed
8
tissue
6
discovering latest
4
latest scientific
4
scientific pathways
4
pathways tissue
4
spheroids opportunities
4

Similar Publications

Environmental Exposure to Bisphenol A Enhances Invasiveness in Papillary Thyroid Cancer.

Int J Mol Sci

January 2025

Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.

Bisphenol A (BPA) is a prevalent environmental contaminant found in plastics and known for its endocrine-disrupting properties, posing risks to both human health and the environment. Despite its widespread presence, the impact of BPA on papillary thyroid cancer (PTC) progression, especially under realistic environmental conditions, is not well understood. This study examined the effects of BPA on PTC using a 3D thyroid papillary tumor spheroid model, which better mimicked the complex interactions within human tissues compared to traditional 2D models.

View Article and Find Full Text PDF

The role of the plasminogen activation system is to regulate the activity of the extracellular protease plasmin. It comprises the urokinase plasminogen activator (uPA), a specific extracellular protease which activates plasminogen, its inhibitor PAI1, and the urokinase plasminogen activator receptor, uPAR, which localizes the urokinase activity. The plasminogen activation system is involved in tissue remodeling through extracellular matrix degradation, and therefore participates in numerous physiological and pathological processes, which make it a potential biomarker.

View Article and Find Full Text PDF

Chitosan is gaining scientific recognition as a hydrogel in bone tissue engineering (BTE) due to its ability to support osteoblast attachment and proliferation. However, its low mechanical strength and lack of structural integrity limit its application. Nanometric hydroxyapatite (HA) is used as a filler to enhance the mechanical properties and osteoinductivity of hydrogels.

View Article and Find Full Text PDF

Synergizing bioprinting and 3D cell culture to enhance tissue formation in printed synthetic constructs.

Biofabrication

January 2025

DWI-Leibniz-Institut für Interaktive Materialien, Forckenbeckstraße 50, Aachen, 52074, GERMANY.

Bioprinting is currently the most promising method to biofabricate complex tissues in vitro with the potential to transform the future of organ transplantation and drug discovery. Efforts to create such tissues are, however, almost exclusively based on animal-derived materials, like gelatin methacryloyl, which have demonstrated efficacy in bioprinting of complex tissues. While these materials are already used in clinical applications, uncertainty about their safety still remains due to their animal origin.

View Article and Find Full Text PDF

Epithelial ovarian cancer (EOC) exhibits a unique mode of metastasis, involving spheroid formation in the peritoneum. Our research on EOC spheroid cell biology has provided valuable insights into the signaling plasticity associated with metastasis. We speculate that EOC cells modify their biology between tumour and spheroid states during cancer dormancy, although the specific mechanisms underlying this transition remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!