Tumors infiltrating the motor system lead to significant disability, often caused by corticospinal tract injury. The delineation of the healthy-pathological white matter (WM) interface area, for which diffusion magnetic resonance imaging (dMRI) has shown promising potential, may improve treatment outcome. However, up to 90% of white matter (WM) voxels include multiple fiber populations, which cannot be correctly described with traditional metrics such as fractional anisotropy (FA) or apparent diffusion coefficient (ADC). Here, we used a novel fixel-based along-tract analysis consisting of constrained spherical deconvolution (CSD)-based probabilistic tractography and fixel-based apparent fiber density (FD), capable of identifying fiber orientation specific microstructural metrics. We addressed this novel methodology's capability to detect corticospinal tract impairment. We measured and compared tractogram-related FD and traditional microstructural metrics bihemispherically in 65 patients with WHO grade III and IV gliomas infiltrating the motor system. The cortical tractogram seeds were based on motor maps derived by transcranial magnetic stimulation. We extracted 100 equally distributed cross-sections along each streamline of corticospinal tract (CST) for along-tract statistical analysis. Cross-sections were then analyzed to detect differences between healthy and pathological hemispheres. All metrics showed significant differences between healthy and pathologic hemispheres over the entire tract and between peritumoral segments. Peritumoral values were lower for FA and FD, but higher for ADC within the entire cohort. FD was more specific to tumor-induced changes in CST than ADC or FA, whereas ADC and FA showed higher sensitivity. The bihemispheric along-tract analysis provides an approach to detect subject-specific structural changes in healthy and pathological WM. In the current clinical dataset, the more complex FD metrics did not outperform FA and ADC in terms of describing corticospinal tract impairment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873606 | PMC |
http://dx.doi.org/10.3389/fonc.2020.622358 | DOI Listing |
Brain Sci
January 2025
Waisman Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
Background: Perinatal brain injury is a leading cause of developmental disabilities, including cerebral palsy. However, further work is needed to understand early brain development in the presence of brain injury. In this case report, we examine the longitudinal neuromotor development of a term infant following a significant loss of right-hemispheric brain tissue due to a unilateral ischemic stroke.
View Article and Find Full Text PDFNeurosurg Focus Video
January 2025
Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
Brainstem tumors are bounded by a compact topography of eloquent tracts, cranial nerves, and nuclei. Reliable intraoperative neuromonitoring aids microneurosurgical technique to optimize safe resection. The authors present a case of motor mapping-guided resection of a recurrent brainstem pilocytic astrocytoma.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
Background: Pediatric growth hormone deficiency (GHD) is a disease resulting from the impaired growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis, but the effects of GHD on children's behavior and brain microstructural structure alterations have not yet been fully clarified. We aimed to investigate the quantitative profiles of gray matter and white matter in pediatric GHD using synthetic magnetic resonance imaging (MRI).
Methods: The data of 50 children with GHD and 50 typically developing (TD) children were prospectively collected.
JAMA Neurol
January 2025
Department of Neurology, Xuanwu Hospital Capital Medical University, National Center for Neurological Disorders, Beijing, China.
Importance: Autoantibodies targeting astrocytes, such as those against glial fibrillary acidic protein (GFAP) or aquaporin protein 4, are crucial diagnostic markers for autoimmune astrocytopathy among central nervous system (CNS) autoimmune disorders. However, diagnosis remains challenging for patients lacking specific autoantibodies.
Objective: To characterize a syndrome of unknown meningoencephalomyelitis associated with an astrocytic autoantibody.
J Neuroeng Rehabil
January 2025
Shirley Ryan AbilityLab, Chicago, IL, USA.
There is a consensus that motor recovery post-stroke primarily depends on the degree of the initial connectivity of the ipsilesional corticospinal tract (CST). Indeed, if the residual CST connectivity is sufficient to convey motor commands, the neuromotor system continues to use the CST predominantly, and motor function recovers up to 80%. In contrast, if the residual CST connectivity is insufficient, hand/arm dexterity barely recovers, even as the phases of stroke progress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!