Nitrate and ammonium are the main nitrogen sources in agricultural soils. In the last decade, ammonium (NH ), a double-sided metabolite, has attracted considerable attention by researchers. Its ubiquitous presence in plant metabolism and its metabolic energy economy for being assimilated contrast with its toxicity when present in high amounts in the external medium. Plant species can adopt different strategies to maintain NH homeostasis, as the maximization of its compartmentalization and assimilation in organic compounds, primarily as amino acids and proteins. In the present study, we report an integrative metabolic response to ammonium nutrition of seven plant species, belonging to four different families: Gramineae (ryegrass, wheat, ), Leguminosae (clover), Solanaceae (tomato), and Brassicaceae (oilseed rape, ). We use principal component analysis (PCA) and correlations among metabolic and biochemical data from 40 experimental conditions to understand the whole-plant response. The nature of main amino acids is analyzed among species, under the hypothesis that those Asn-accumulating species will show a better response to ammonium nutrition. Given the provision of carbon (C) skeletons is crucial for promotion of the nitrogen assimilation, the role of different anaplerotic enzymes is discussed in relation to ammonium nutrition at a whole-plant level. Among these enzymes, isocitrate dehydrogenase (ICDH) shows to be a good candidate to increase nitrogen assimilation in plants. Overall, metabolic adaptation of different carbon anaplerotic activities is linked with the preference to synthesize Asn or Gln in their organs. Lastly, glutamate dehydrogenase (GDH) reveals as an important enzyme to surpass C limitation during ammonium assimilation in roots, with a disparate collaboration of glutamine synthetase (GS).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873483 | PMC |
http://dx.doi.org/10.3389/fpls.2020.632285 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
School of Physical and Applied Sciences, Goa University, Taleigao Plateau, Goa 403206, India. Electronic address:
Analyzing manure nutrients such as total ammonium nitrogen (NH), dry matter (DM), calcium oxide (CaO), total nitrogen (-N), phosphorus pentoxide (PO), magnesium oxide (MgO), and potassium oxide (KO) helps in fulfilling crop nutritional needs while improving the profitability and a lower risk of pollutants. This study used two Near Infra Red (NIR) spectral datasets of fresh and dried manure. The freshly prepared NHCl, CaO, Ca(OH), PO, MgO, and KO samples were used for spectral signature peak identification and calibration.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Horticulture, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Environ Pollut
January 2025
Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China. Electronic address:
Iron is one of the indispensable trace elements in living organisms. However, excessive iron deposition in organisms is prone to induce dysfunction of the liver and other vital organs. The present study aimed to investigate the mechanism how aquatic high iron affects iron transport and induces hepatic injury in zebrafish.
View Article and Find Full Text PDFACS Nano
January 2025
Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
Int J Biol Macromol
December 2024
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
The development of functional hydrogel dressings with robust mechanical properties has posed a significant challenge in expediting the healing process of MRSA-infected wounds. To address this, a composite hydrogel, comprising carboxylated soybean cellulose nanocrystals (CNCs), poly(N-isopropyl acrylamide) (PNIPAM), dimethyl diallyl ammonium chloride (PDADMAC), and kaolin (CN/P-K) was synthesized. CNCs served to stabilize the interpenetrating polymer networks of PNIPAM and PDADMAC through hydrogen bonding and electrostatic interactions, respectively, while the kaolin interlayer improved the material toughness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!