A novel coronavirus, named COVID-19, has become one of the most prevalent and severe infectious diseases in human history. Currently, there are only very few vaccines and therapeutic drugs against COVID-19, and their efficacies are yet to be tested. Drug repurposing aims to explore new applications of approved drugs, which can significantly reduce time and cost compared with drug discovery. In this study, we built a virus-drug dataset, which included 34 viruses, 210 drugs, and 437 confirmed related virus-drug pairs from existing literature. Besides, we developed an Indicator Regularized non-negative Matrix Factorization (IRNMF) method, which introduced the indicator matrix and Karush-Kuhn-Tucker condition into the non-negative matrix factorization algorithm. According to the 5-fold cross-validation on the virus-drug dataset, the performance of IRNMF was better than other methods, and its Area Under receiver operating characteristic Curve (AUC) value was 0.8127. Additionally, we analyzed the case on COVID-19 infection, and our results suggested that the IRNMF algorithm could prioritize unknown virus-drug associations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7878370 | PMC |
http://dx.doi.org/10.3389/fimmu.2020.603615 | DOI Listing |
Purpose Pre-clinical studies have demonstrated direct influences of the autonomic nervous system (ANS) on the immune system. However, it remains unknown if connections between the peripheral ANS and immune system exist in humans and contribute to the development of chronic inflammatory disease. This study had three aims: 1.
View Article and Find Full Text PDFNature
January 2025
Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA.
Hepatocellular carcinoma (HCC) originates from differentiated hepatocytes undergoing compensatory proliferation in livers damaged by viruses or metabolic-dysfunction-associated steatohepatitis (MASH). While increasing HCC risk, MASH triggers p53-dependent hepatocyte senescence, which we found to parallel hypernutrition-induced DNA breaks. How this tumour-suppressive response is bypassed to license oncogenic mutagenesis and enable HCC evolution was previously unclear.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Pathobiology Ministry of Education, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
In the post-large era, various COVID-19 sequelae are getting more and more attention to health problems. Although the mortality rate of the COVID-19 infection is now declining, it is often accompanied by new clinical sequelae with different symptoms such as fatigue after infection, loss of smell. The degree of age, gender, virus infection seems to be weakly correlated with clinical symptoms.
View Article and Find Full Text PDFTransl Oncol
December 2024
Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China. Electronic address:
5-Methylcytosine (m5C) is a ubiquitous RNA modification that is closely related to various cellular functions. However, no studies have comprehensively demonstrated the role of m5C in hepatocellular carcinoma (HCC) progression. In this study, six pairs of HCC and adjacent tissue samples were subjected to methylated RNA immunoprecipitation sequencing to identify precise m5C loci.
View Article and Find Full Text PDFBioinformatics
December 2024
School of Computer Science and Engineering, The Hebrew University of Jerusalem.
Motivation: Non-negative Matrix Factorization (NMF) is a powerful tool often applied to genomic data, to identify non-negative latent components that constitute linearly mixed samples. It is useful when the observed signal combines contributions from multiple sources, such as cell types in bulk measurements of heterogeneous tissue. NMF accounts for two types of variation between samples-disparities in the proportions of sources and observation noise.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!