Spatial navigation is a prodromal dementia marker. Exercise used alongside virtual reality improves many cognitive functions, but effects on spatial navigation are still unclear. To investigate the effect of virtual reality-based physical exercise with 2D exergames on spatial navigation in institutionalized non-robust older persons. A total of 14 older persons (aged ≧ 60) were randomly allocated to the exergame (EG) and active control (ACG) groups. EG performed exercises with 2D exergames, while the ACG used the same movements as the EG, but without the use of virtual reality. Spatial navigation was assessed through the Floor Maze Test, where the immediate maze time (IMT) and delayed maze time (DMT) were recorded. Spatial navigation was enhanced in EG participants compared to ACG individuals. A significant ( = 0.01) IMT reduction between groups was observed, while DMT time without prior planning was significantly different at the significance threshold ( = 0.07). Virtual reality-based exercise improves the spatial navigation of institutionalized non-robust older persons. This study should be replicated to confirm the findings reported herein. This study was registered in the Brazilian Registry of Clinical Trials (Protocol RBR-8dv3kg - https://ensaiosclinicos.gov.br/rg/RBR-8dv3kg).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7874171 | PMC |
http://dx.doi.org/10.3389/fneur.2020.609988 | DOI Listing |
Eur J Neurosci
January 2025
Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, Institut Pasteur, Université Paris Cité, Paris, France.
Hippocampus
January 2025
Cognitive Science Program and Department of Psychology, University of Arizona, Tucson, Arizona, USA.
Numerous scientific advances and discoveries have arisen from research on the hippocampal formation. This special issue provides first-person historical descriptions of these advances and discoveries in hippocampal research, written by those directly involved in the research. This is the first section of a special issue that will also include future articles on this topic.
View Article and Find Full Text PDFData Brief
December 2024
Department of Neurophysics, Philipps University Marburg, Karl-von-Frisch Straße 8a, 35043 Marburg, Hesse, Germany.
We present a comprehensive dataset comprising head- and eye-centred video recordings from human participants performing a search task in a variety of Virtual Reality (VR) environments. Using a VR motion platform, participants navigated these environments freely while their eye movements and positional data were captured and stored in CSV format. The dataset spans six distinct environments, including one specifically for calibrating the motion platform, and provides a cumulative playtime of over 10 h for both head- and eye-centred perspectives.
View Article and Find Full Text PDFFront Synaptic Neurosci
December 2024
Laboratory of Physiology, Department of Medicine, University of Patras, Patras, Greece.
β-adrenergic receptors (β-ARs) play a critical role in modulating learning, memory, emotionality, and long-term synaptic plasticity. Recent studies indicate that β-ARs are necessary for long-term potentiation (LTP) induction in the ventral hippocampus under moderate synaptic activation conditions that do not typically induce LTP. To explore potential dorsoventral differences in β-AR-mediated effects, we applied the β-AR agonist isoproterenol (10 μM, 30 min) to dorsal and ventral hippocampal slices, recording field excitatory postsynaptic potentials (fEPSPs) and population spikes (PSs) from the CA1 region.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
Microplastic (MP) contamination poses significant risks to ecosystems and human health. However, the absence of standardized protocols, detailed polymer identification, and sources identification hinders the development of targeted mitigation strategies, particularly in developing nations. There is a scarcity of comprehensive data on MP distribution, sources, and transport mechanisms in freshwater environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!