Operation brain trauma therapy (OBTT) is a drug- and biomarker-screening consortium intended to improve the quality of preclinical studies and provide a rigorous framework to increase the translational potential of experimental traumatic brain injury (TBI) treatments. Levetiracetam (LEV) is an antiepileptic agent that was the fifth drug tested by OBTT in three independent rodent models of moderate to severe TBI. To date, LEV has been the most promising drug tested by OBTT and was therefore advanced to testing in the pig. Adult male micro pigs were subjected to a mild central fluid percussion brain injury followed by a post-injury intravenous infusion of either 170 mg/kg LEV or vehicle. Systemic physiology was assessed throughout the post-injury period. Serial serum samples were obtained pre-injury as well as at 1 min, 30 min, 1 h, 3 h, and 6 h post-injury for a detailed analysis of the astroglial biomarker glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1. Tissue was collected 6 h following injury for histological assessment of diffuse axonal injury using antibodies against the amyloid precursor protein (APP). The animals showed significant increases in circulating GFAP levels from baseline to 6 h post-injury; however, LEV treatment was associated with greater GFAP increases compared to the vehicle. There were no differences in the numbers of APP+ axonal swellings within the pig thalamus with LEV treatment; however, significant alterations in the morphological properties of the APP+ axonal swellings, including reduced swelling area and increased swelling roundness, were observed. Additionally, expression of the neurite outgrowth marker, growth-associated protein 43, was reduced in axonal swellings following LEV treatment, suggesting potential effects on axonal outgrowth that warrant further investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7874167 | PMC |
http://dx.doi.org/10.3389/fneur.2020.586958 | DOI Listing |
Neurobiol Pain
December 2024
Virginia Polytechnic Institute and State University. Department of Biomedical Engineering, 325 Stranger St., Blacksburg, VA 24060, United States.
Chronic headaches and pain are prevalent in those who are exposure to blast events, yet there is a gap in fundamental data that identifies the pathological mechanism for the chronification of pain. Blast-related post-traumatic headaches (PTH) are understudied and chronic pain behaviors in preclinical models can be vital to help elucidate PTH mechanisms. The descending pain modulatory system controls pain perception and involves specific brain regions such as the cortex, thalamus, pons, and medulla.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Background: Leukocytes play an important role in inflammatory response after a traumatic brain injury (TBI). We designed this study to identify TBI phenotypes by clustering blood levels of various leukocytes.
Methods: TBI patients from the Medical Information Mart for Intensive Care-III (MIMIC-III) database were included.
Front Neurol
January 2025
Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China.
Retinal ganglion cells (RGCs) generally fail to regenerate axons, resulting in irreversible vision loss after optic nerve injury. While many studies have shown that modulating specific genes can enhance RGCs survival and promote optic nerve regeneration, inducing long-distance axon regeneration through single-gene manipulation remains challenging. Nevertheless, combined multi-gene therapies have proven effective in significantly enhancing axonal regeneration.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Geriatric Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
Endothelial cell dysfunction plays a crucial role in the early development of cerebral small vessel disease (CSVD). Arginase-1 (ARG1) is expressed in endothelial cells, and its deficiency may exacerbate cerebrovascular damage by increasing reactive oxygen species (ROS) production, thereby inducing endothelial cell apoptosis. Berbamine (BBM) has shown potential in neuroprotection and cardiovascular disease prevention.
View Article and Find Full Text PDFFront Cardiovasc Med
January 2025
Department of Anesthesiology and Reanimation, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Türkiye.
Aim: This study aimed to protect brain functions in patients who experienced in-hospital cardiac arrest through the application of local cerebral hypothermia. By utilizing a specialized thermal hypothermia device, this approach sought to mitigate ischemic brain injury associated with post-cardiac arrest syndrome, enhance survival rates, and improve neurological outcomes as measured by standardized scales.
Methods: A prospective, single-center cohort study was conducted involving patients aged ≥18 years who experienced in-hospital cardiac arrest and achieved return of spontaneous circulation (ROSC).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!