Cynandione A, an acetophenone isolated from Cynanchum Radix, exhibits antineuropathic pain effect. This study further explored the target molecule and signaling mechanisms underlying cynandione-A-induced antineuropathic pain. Intrathecal injection of cynandione A significantly attenuated mechanical allodynia in neuropathic rats and substantially increased spinal expression of IL-10 and β-endorphin but not dynorphin A. Cynandione A treatment also enhanced expression of IL-10 and β-endorphin but not α7 nicotinic acetylcholine receptors (nAChRs) in cultured microglia. The IL-10 antibody attenuated cynandione-A-induced spinal or microglial gene expression of β-endorphin and mechanical allodynia, whereas the β-endorphin antiserum blocked cynandione-A-induced mechanical antiallodynia but not spinal or microglial IL-10 gene expression. The α7 nAChR antagonist methyllycaconitine significantly reduced cynandione-A-induced mechanical antiallodynia and spinal or microglial expression of IL-10 and β-endorphin. Furthermore, cynandione A stimulated microglial phosphorylation of PKA, p38, and CREB in an α7-nAChR-dependent manner, and treatment with their inhibitors attenuated cynandione-A-induced mechanical antiallodynia and spinal or microglial expression of IL-10 and β-endorphin. In addition, cynandione A stimulated spinal phosphorylation of the transcription factor STAT3, which was inhibited by methyllycaconitine, the PKA activation inhibitor or IL-10 antibody. The STAT3 inhibitor NSC74859 also abolished cynandione-A-induced mechanical antiallodynia and spinal expression of β-endorphin. These findings suggest that cynandione A suppresses neuropathic pain through α7-nAChR-dependent IL-10/β-endorphin signaling pathway in spinal microglia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7873367 | PMC |
http://dx.doi.org/10.3389/fphar.2020.614450 | DOI Listing |
Dev Comp Immunol
January 2025
Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou, 510631, China. Electronic address:
IL-21 is a type I cytokine that is produced by activated CD4 T cells and has a significant impact on the growth, survival, and functional activation of B lymphocytes. While IL-21 has been identified in several teleost fish species, its function and associated mechanisms focus on teleost fish B cells remain largely unknown. In this study, we aimed to investigate the effects of IL-21 (OnIL-21) on IgM B cells from Nile tilapia (Oreochromis niloticus), as well as the intracellular signaling transduction pathway involved.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
January 2025
Global Health and Interdisciplinary Disease Research Center and Center for Genomics, College of Public Health, Interdisciplinary Research Building (IDRB), Tampa, Florida, USA.
Mice in the genus Peromyscus are abundant and geographically widespread in North America, serving as reservoirs for zoonotic pathogens, including Borrelia burgdorferi (B. burgdorferi), the causative agent of Lyme disease, transmitted by Ixodes scapularis ticks. While the white-footed mouse (Peromyscus leucopus (P.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are gaining recognition as promising therapeutic carriers for immune modulation. We investigated the potential of EVs derived from HEK293FT cells to stabilize and deliver interleukin-10 (IL-10), a key anti-inflammatory cytokine. Using minicircle (MC) DNA vectors, we achieved IL-10 overexpression and efficient incorporation into EVs, yielding superior stability compared to free, recombinant IL-10 protein.
View Article and Find Full Text PDFHeliyon
January 2025
The First Affiliated Hospital of Bengbu Medical University, Department of Vascular Surgery, 287 Changhuai Road, Bengbu, 233004, China.
Objective: M6A methylation-regulated macrophages play an important role in the occurrence and development of arteriosclerosis. However, their role in lower extremity arteriosclerosis remains unclear. Therefore, this study aims to explore the key factors that regulate arteriosclerosis methylation in the lower extremities and the mechanism by which they affect arteriosclerosis by influencing macrophage polarization.
View Article and Find Full Text PDFIntroduction: To investigate how adipose-derived mesenchymal stem cells (ADSCs) regulate the balance between regulatory T cells (Treg) and Th17 cells through the IL-2/JAK3/STAT5 signaling pathway in a rat model of allergic rhinitis (AR).
Methods: Adipose-derived stem cells (ADSCs) were used to treat an ovalbumin (OVA)-induced AR rat model. The pathological changes and nasal symptoms were observed by HE staining and scanning electron microscopy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!