In this study, controlled growth of Ni-MOF was decorated in amino acid-functionalized graphene nanoplatelets (FxGnP) by a solvothermal approach. The synthesized nanocomposite was characterized by various spectral, microscopic, and electrochemical techniques. FE-SEM and TEM image results exhibited the sheet-like structure of FxGnP and spherical-like Ni-MOF with an average size of 5.6 μm. Appreciably, the size of Ni-MOF was reduced to ∼2.3 μm while introducing the FxGnP. The presence of a large number of hydroxyl and epoxy functional groups of FxGnP acts as a nucleation center and restricted the uncontrolled growth of Ni-MOF. The FxGnP-Ni-MOF composite was modified on GCE and then utilized for the oxidation of bisphenol A (BPA). The nanocomposite material showed a sharp peak at +0.38 V vs. Ag/AgCl (saturated NaCl) with a stable response for BPA due to their less particle size with high electroactive surface area and higher electrical conductance, whereas bare GCE failed to the stable determination of BPA. The developed assay for determination of BPA exhibited a wide linear range from 2 × 10 M to 10 × 10 M, LOD 0.184 × 10 M and sensitivity of 247.65 μA mM cm. The FxGnP-Ni-MOF/GCE showed good stability and reproducibility against BPA. Finally, the present electrocatalyst was effectively utilized for the quantitative determination of BPA in water samples and obtained results were validated with HPLC method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2021.338228 | DOI Listing |
Cardiovasc Interv Ther
January 2025
Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
Advances in chronic thromboembolic pulmonary hypertension (CTEPH) treatment have improved prognosis, shifting focus towards symptom management. This study aimed to identify factors influencing the World Health Organization functional class (WHO-FC) in CTEPH patients. The CTEPH AC registry is a prospective, multicenter database from 35 Japanese institutions, analyzing data from August 2018 to July 2023.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Biomedical and Translational Sciences Institute, Neuroscience Division, Athens, GA, United States.
Significance: Women are at increased risk for mood disorders, which may be partly attributed to exposure to endocrine-disrupting chemicals (EDCs) during sensitive periods such as pregnancy. Exposure during these times can impact brain development in the offspring, potentially leading to mood disorders in later life. Additionally, fluctuating levels of endogenous estrogens, as seen during pregnancy, or the use of oral contraceptives, can further elevate this risk.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
In this project, a new heterogeneous polymeric ionic liquid catalyst based on vinylimidazole, stabilized on magnetic nanoparticles )FeO@AlO@[PBVIm]HSO) was prepared. Then the desired catalyst was identified by TGA, FT-IR, VSM, and TEM techniques. The efficiency of this catalyst was measured in the synthesis of chromene, xanthene, and dihydropyrimidinone.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Department of Otolaryngology Head and Neck Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan; BNCT Joint Clinical Institute, Osaka Medical and Pharmaceutical University, Takatsuki, Japan.
Purpose: Boron neutron capture therapy (BNCT) perform as a treatment option for locally advanced or recurrent unresectable head and neck cancers since June 2020 in Japan. The effect of BNCT on parotid carcinoma, which presents a variety of histologic types, remains unclear. The object of this study was to investigate the antitumor efficacy of BNCT against parotid gland carcinoma by focusing on LAT1, which is involved in the uptake of L-BPA, the boron compound used in BNCT.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, Faculty of Science, Hacettepe University, Beytepe, Ankara 06800, Turkey.
The sensitive Bisphenol A (BPA) detection by an electrochemical sensor based on gold nanoparticle-doped molecularly imprinted polymer was successfully improved. This study describes the development of a method for BPA detection in both aqueous solution and real water samples using N-methacroyl-(L)-cysteine methyl ester and N-methacryloyl-(L)-phenylalanine methyl ester coated pencil graphite electrodes modified with AuNPs by differential pulse voltammetry (DPV). Importantly, AuNPs, which increase the electroactivity, were used to increase the surface area of a BPA-imprinted pencil graphite electrode (MIP PGE) sensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!