BNN20, a C17-spiroepoxy derivative of the neurosteroid dehydroepiandrosterone, has been shown to exhibit strong neuroprotective properties but its role in glial populations has not been assessed. Our aim was to investigate the effect of BNN20 on glial populations by using in vitro and in vivo approaches, taking advantage of the well-established lysophosphatidylcholine (LPC)-induced focal demyelination mouse model. Our in vivo studies, performed in male mice, showed that BNN20 treatment leads to an increased number of mature oligodendrocytes (OLs) in this model. It diminishes astrocytic accumulation during the demyelination phase leading to a faster remyelination process, while it does not affect oligodendrocyte precursor cell recruitment or microglia/macrophage accumulation. Additionally, our in vitro studies showed that BNN20 acts directly to OLs and enhances their maturation even after they were treated with LPC. This beneficial effect of BNN20 is mediated, primarily, through the neurotrophin receptor TrkA. In addition, BNN20 reduces microglial activation and their transition to their pro-inflammatory state upon lipopolysaccharides stimulation in vitro. Taken together our results suggest that BNN20 could serve as an important molecule to develop blood-brain barrier-permeable synthetic agonists of neurotrophin receptors that could reduce inflammation, protect and increase the number of functional OLs by promoting their differentiation/maturation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.24809 | DOI Listing |
Neural Regen Res
June 2024
Laboratory of Developmental Biology, Department of Biology, University of Patras, Patras, Greece.
We have previously shown the neuroprotective and pro-neurogenic activity of microneurotrophin BNN-20 in the substantia nigra of the “weaver” mouse, a model of progressive nigrostriatal degeneration. Here, we extended our investigation in two clinically-relevant ways. First, we assessed the effects of BNN-20 on human induced pluripotent stem cell-derived neural progenitor cells and neurons derived from healthy and parkinsonian donors.
View Article and Find Full Text PDFCells
May 2022
Laboratory of Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece.
Two main stem cell pools exist in the postnatal mammalian brain that, although they share some "stemness" properties, also exhibit significant differences. Multipotent neural stem cells survive within specialized microenvironments, called niches, and they are vulnerable to ageing. Oligodendroglial lineage-restricted progenitor cells are widely distributed in the brain parenchyma and are more resistant to the effects of ageing.
View Article and Find Full Text PDFStem Cell Res Ther
June 2021
Lab of Developmental Biology, Department of Biology, University of Patras, 26500, Patras, Greece.
Background: Loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) underlines much of the pathology of Parkinson's disease (PD), but the existence of an endogenous neurogenic system that could be targeted as a therapeutic strategy has been controversial. BNN-20 is a synthetic, BDNF-mimicking, microneurotrophin that we previously showed to exhibit a pleiotropic neuroprotective effect on the dopaminergic neurons of the SNpc in the "weaver" mouse model of PD. Here, we assessed its potential effects on neurogenesis.
View Article and Find Full Text PDFJ Neurosci Res
May 2021
Department of Basic Science, Faculty of Medicine, University of Crete, Crete, Greece.
BNN20, a C17-spiroepoxy derivative of the neurosteroid dehydroepiandrosterone, has been shown to exhibit strong neuroprotective properties but its role in glial populations has not been assessed. Our aim was to investigate the effect of BNN20 on glial populations by using in vitro and in vivo approaches, taking advantage of the well-established lysophosphatidylcholine (LPC)-induced focal demyelination mouse model. Our in vivo studies, performed in male mice, showed that BNN20 treatment leads to an increased number of mature oligodendrocytes (OLs) in this model.
View Article and Find Full Text PDFNeuropharmacology
March 2020
Department of Physiology, School of Medicine, University of Patras, Patras, 26500, Greece. Electronic address:
BNN-20 is a synthetic microneurotrophin, long-term (P1-P21) administration of which exerts potent neuroprotective effect on the "weaver" mouse, a genetic model of progressive, nigrostriatal dopaminergic degeneration. The present study complements and expands our previous work, providing evidence that BNN-20 fully protects the dopaminergic neurons even when administration begins at a late stage of dopaminergic degeneration (>40%). Since neuroinflammation plays a critical role in Parkinson's disease, we investigated the possible anti-neuroinflammatory mechanisms underlying the pharmacological action of BNN-20.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!