Chlorella is a green alga consumed as dietary food supplement in pulverized form. In addition to its high nutritional value, it is reported as an excellent detoxifying agent. The pulverized Chlorella is partially soluble in water and insoluble portion has been reported for removal of mercury, cadmium and radioactive strontium from body. Chlorella contains a variety of metal-binding functional groups such as carboxyl, amino, phosphoryl, hydroxyl and carbonyl groups, which has high affinity towards various metal ions. The present study was envisaged to evaluate the chelating effect of water soluble fraction of Chlorella powder (AqCH) on metal ions. Fura-2 fluorescence ratio (F340/F380) was measured by fluorescence spectrometer (FS) after the exposure of chloride salt of metals viz., strontium, cobalt, barium, cesium, thallium and mercury to lymphocytes. Pretreatment of AqCH (0.1-20 mg mL) was given to evaluate the attenuating effect on fura-2 fluorescence ratio induced by metal ions. The intracellular levels of these metal ions were analyzed by atomic absorption spectrophotometer (AAS) and fluorescence microscopy (FM). Pretreatment with AqCH significantly attenuated the metal induced fluorescence ratio in dose-dependent manner. The results of AAS and FM were found in coherence with fura-2 fluorescence ratio which emphasized that AqCH significantly prevented the metal ions internalization. The present study suggests AqCH chelates with these metal ions and prevents its interaction with cells thereby reducing the intracellular mobilization of Ca.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10534-021-00285-1 | DOI Listing |
Biol Trace Elem Res
January 2025
Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang 050071, Hebei, China.
Male infertility is a common complication of diabetes. Diabetes leads to the decrease of zinc (Zn) content, which is a necessary trace element to maintain the normal structure and function of reproductive organs and spermatogenesis. The purpose of this study was to investigate the effect of metformin combined with zinc on testis and sperm in diabetic mice.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
A prevalent challenge in particulate photocatalytic water splitting lies in the fact that while numerous photocatalysts exhibit outstanding hydrogen evolution reaction (HER) activity in organic sacrificial reagents, their performance diminishes markedly in a Z-scheme water splitting system using electronic mediators. This underlying reason remains undefined, posing a long-standing issue in photocatalytic water splitting. Herein, we unveiled that the primary reason for the decreased HER activity in electronic mediators is due to the strong adsorption of shuttle ions on cocatalyst surfaces, which inhibits the initial proton reduction and results in a severe backward reaction of the oxidized shuttle ions.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
This study presents a novel nanostructured material formed by inserting oxidized carbon nanohorns (CNHox) between layered graphene oxide (GO) nanosheets using metal ions (M) from nitrate as intermediates. The resulting GO-CNHox-M structure effectively mitigated interlayer aggregation of the GO nanosheets. This insertion strategy promoted the formation of nanowindows on the surface of the GO sheets and larger mesopores between the GO nanosheets, improving material porosity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shandong university, School of Chemistry and Chemical Engineering, No 27, Shandananlu,, 250100, Jinan, CHINA.
The regulation of artificial interphase for advanced Zn anode is an effective solution to achieve superior electrochemical performance for aqueous batteries. However, the deployment of atomically precise architectures and ligand engineering to achieve functionalization-oriented regulatory screening is lacking, which is hindered by higher requirements for synthetic chemistry and structural chemistry. Herein, we have first performed ligand engineering which selected zinc ion trapping ligands (-CH3) based on the coordination effect, and zinc substrate binding ligands (-N=N-xC6H5) based on the electrostatic interaction.
View Article and Find Full Text PDFChemSusChem
January 2025
Swinburne University of Technology - Hawthorn Campus: Swinburne University of Technology, Chemistry and Biotechnology, AUSTRALIA.
The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!