Heavy metal and metalloid toxicity in agricultural land needs special attention for crop production essential to feed increasing population globally. Plant growth-promoting rhizobacteria (PGPR) are native biological agents that have tremendous potential to augment crop production in contaminated fields. This study involves selection and identification (through 16S rRNA gene sequence and FAME analysis) of a potent Pseudomonas sp. (strain K32) isolated from a metal-contaminated rice rhizosphere, aimed to its application for sustainable agriculture. Apart from multi-heavy metal(loid) resistance (Cd, Pb and As upto 4000, 3800, 3700 μg/ml respectively) along with remarkable Cd bioaccumulation potential (∼90%), this strain showed IAA production, nitrogen-fixation and phosphate solubilization under Cd stress. This bioaccumulation efficiency coupled with PGP traits resulted in the significant enhancement of rice seedling growth under Cd stress. This positive impact of K32 strain was clearly manifested in morphological and biochemical improvements under Cd stress including successful root colonization with rice roots. Cd uptake was also reduced significantly in seedlings in presence of K32 strain. Together with all mentioned properties, K32 showed bio-control potential against plant pathogenic fungi viz. Aspergillus flavus, Aspergillus parasiticus, Paecilomyces sp., Cladosporium herbarum, Rhizopus stolonifer and Alternaria alternata which establish K32 strain a key player in effective bioremediation of agricultural fields. Biocontrol potential was found to be the result of enzymatic activities viz. chitinase, β-1,3-glucanase and protease which were estimated as 8.17 ± 0.44, 4.38 ± 0.35 and 7.72 ± 0.28 U/mg protein respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.129819 | DOI Listing |
Biology (Basel)
November 2024
Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str. 1a, Moscow 119435, Russia.
Sci Rep
July 2024
Department of Pharmaceutical Industry, Industrial Technology Center of Wakayama Prefecture, Wakayama, Japan.
Plants are valuable resources for drug discovery as they produce diverse bioactive compounds. However, the chemical diversity makes it difficult to predict the biological activity of plant extracts via conventional chemometric methods. In this research, we propose a new computational model that integrates chemical composition data with structure-based chemical ontology.
View Article and Find Full Text PDFFASEB J
July 2023
International Iberian Nanotechnology Laboratory (INL), Braga, Portugal.
Acinetobacter baumannii is the leading bacteria causative of nosocomial infections, with high fatality rates, mostly due to their multi-resistance to antibiotics. The capsular polysaccharide (k-type) is a major virulence factor. Bacteriophages are viruses that specifically infect bacteria and have been used to control drug-resistant bacterial pathogens.
View Article and Find Full Text PDFFront Microbiol
December 2022
Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Unlabelled: spp. have primarily been reported as non-pathogenic, plant-probiotic bacteria, despite the presence of some opportunistic human pathogens in the genus. Here, three Gram-stain negative, rod-shaped, non-spore-forming bacteria, designated as strains CPCC 101365, CPCC 101269, and CPCC 101426 were isolated from surface-sterilized medicinal plant roots of a mulberry plant in Chuxiong of the Yunnan Province, freshwater from Erhai Lake in the Yunnan Province, and sandy soils in the Badain Jaran desert in Inner Mongolia Autonomous Region, China, respectively.
View Article and Find Full Text PDFPlant Dis
July 2022
Qingdao, China;
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!