Water is an essential solvent that is extremely necessary for the survival of life. Water pollution due to the increased utilization of water for various processes, including domestic and industrial activities, poses a special threat that contaminates both surface and ground water. In recent years, advanced oxidation processes (AOPs) have been applied to deal with wastewater problems, which is a green method used to oxidize organic contaminants with strong oxidative radical species. Among the AOPs, photocatalytic technology is one of the most promising strategies for wastewater cleaning, which fulfills the aims of environmentally friendly and sustainable development. Owing to their unique electronic, optical, and structural properties, nanoscale semiconductors have received substantial interest as materials for AOPs, particularly inspired by their superb quantum confinement effects and large surface-area-to-volume ratio, which are essential for catalytic reaction kinetics. Recent advancements have revealed that semiconductor nanocrystals, known as quantum dots (QDs), are newly emerging zero-dimensional (0-D) nanomaterials, which have garnered much attention owing to their special physiochemical characteristics such as high conductivity, thermo-chemical and opto-mechanical stability, high adsorption coefficients, and, most importantly, their admirable recyclability. In this review, we provide a clear understanding of the importance of semiconductor QD-based nanocomposites in the degradation of organic pollutants, in addition to the mechanism involved in the reaction process. Following this, the enhancement of different materials, such as metal oxides and metal sulfide QD-based nanocomposites, is discussed in the context of combating environmental pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.129849 | DOI Listing |
Microb Ecol
January 2025
State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
The ecological niche separation of microbial interactions in forest ecosystems is critical to maintaining ecological balance and biodiversity and has yet to be comprehensively explored in microbial ecology. This study investigated the impacts of soil properties on microbial interactions and carbon metabolism potential in forest soils across 67 sites in China. Using redundancy analysis and random forest models, we identified soil pH and dissolved organic matter (DOM) aromaticity as the primary drivers of microbial interactions, representing abiotic conditions and resource niches, respectively.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
The increasing level of cadmium (Cd) contamination in soil due to anthropogenic actions is a significant problem. This problem not only harms the natural environment, but it also causes major harm to human health via the food chain. The use of chelating agent is a useful strategy to avoid heavy metal uptake and accumulation in plants.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR. China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR. China. Electronic address:
Antimony (Sb) contamination in water resources poses a critical environmental and health challenge globally. Sulfate reducing bacteria (SRB) are employed to reduce SO to S for removing Sb in a microbial electrolysis cell (MEC). Yet, the reduction efficiency of reducing SO and Sb(Ⅴ) through SRB remains relatively low, and the underlying mechanism remains elusive.
View Article and Find Full Text PDFBioresour Technol
January 2025
National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China. Electronic address:
The combination of hematite and biochar significantly accelerated tetracycline (TC) removal under visible light irradiation. The k of TC removal with Hem/BC-5 reached 0.103 min, 3.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China. Electronic address:
Formaldehyde (FA) is a hazardous pollutant causing acute and chronic poisoning in humans. While plants provide a natural method of removing FA pollution, their ability to absorb and degrade FA is limited. To improve the ability of plants to degrade FA, we introduced the E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!