Inhibitory effects of two monosubstituted decavanadates by Pt in monoplatino(IV)nonavanadate(V) ([HPtVO], VPt), and by Mo in monomolybdo(VI)nonavanadate(V) ([MoVO],VMo) were investigated against the growth of Mycobacterium smegmatis with the EC values of 0.0048 mM and 0.015 mM, respectively. These compare to the reported inhibitory value for decavanadate ([VO]/[HVO], V) on Mycobacterium smegmatis (EC = 0.0037 mM). Time-dependent V NMR spectroscopic studies were carried out for all three polyanions in aqueous solution, biological medium (7H9), heated and non-heated supernatant to evaluate their stability in their respective media, monitor their hydrolysis to form various oxovanadates over time and calculate the EC values. These studies allow us to calculate adjusted and maximum EC for the polyoxovanadate (POV) present in solution at the beginning of the study when there is most intact anion in the media and thus the EC values represent the initial effects of the POVs. The results have shown that V is 1.3 times more potent than VPt and 4 times more potent than VMo, indicating that the inhibitory effects of monosubstituted polyanions are related to the V structure. We attributed the minor differences in the growth inhibitory effects to the differences in charges (5- vs 6-) of VPt and VMo compared to V and/or the differences in the chemical composition. We concluded that the potency of the growth inhibition by V is mainly due to the chemical properties of the vanadium and the decametalate's unique structure even though the presence of the Mycobacterium smegmatis facilitate hydrolysis of the anions. SYNOPSIS: Two decavanadate derivatives, monoplatino(IV)nonavanadate(V) ([HPtVO]), monomolybdo(VI)nonavanadate(V) ([MoVO]) and decavanadate are more potent growth inhibitors of Mycobacterium smegmatis than monomeric vanadate. The spectroscopic characterization carried out in the growth medium led to the conclusion that both the decavanadate structure and its properties are important for its growth effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2021.111356 | DOI Listing |
Nat Chem Biol
January 2025
Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
Diverse bacteria and archaea use atmospheric CO as an energy source for long-term survival. Bacteria use [MoCu]-CO dehydrogenases (Mo-CODH) to convert atmospheric CO to carbon dioxide, transferring the obtained electrons to the aerobic respiratory chain. However, it is unknown how these enzymes oxidize CO at low concentrations and interact with the respiratory chain.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
The mycobacterial ABC transporter IrtAB features an ABC exporter fold, yet it imports iron-charged siderophores called mycobactins. Here, we present extensive cryo-EM analyses and DEER measurements, revealing that IrtAB alternates between an inward-facing and an outward-occluded conformation, but does not sample an outward-facing conformation. When IrtAB is locked in its outward-occluded conformation in nanodiscs, mycobactin is bound in the middle of the lipid bilayer at a membrane-facing crevice opening at the heterodimeric interface.
View Article and Find Full Text PDFElife
January 2025
Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Junior Research Group Synthetic Microbiology, Jena, Germany.
Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene , which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes.
View Article and Find Full Text PDFMycobacteriophages are viruses that specifically infect bacteria of the Mycobacterium genus. A substantial collection of mycobacteriophages has been isolated and characterized, offering valuable insights into their diversity and evolution. This collection also holds significant potential for therapeutic applications, particularly as an alternative to antibiotics in combating drug-resistant bacterial strains.
View Article and Find Full Text PDFMolecules
January 2025
N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119991 Moscow, Russia.
The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!