Lamellarin D, a marine natural product, acts as a potent inhibitor of DNA topoisomerase I (Topo I). To modify its physicochemical property and biological activity, a series of mono- and di-glycosylated derivatives were designed and synthesized through 22-26 multi-steps. Their inhibition of human Topo I was evaluated, and most of the glycosylated derivatives exhibited high potency in inhibiting Topo I activity as well as lamellarin D. All the 15 target compounds were evaluated for their cytotoxic activities against five human cancer cell lines. The typical lamellarin derivative ZL-3 exhibited the best activity with IC values of 3 nM, 10 nM, and 15 nM against human lung cancer A549 cells, human colon cancer HCT116 cells and human hepatocellular carcinoma HepG2 cells. Compound ZL-1 exhibited anti-cancer activity with IC of 14 nM and 24 nM against human colon cancer HCT116 cells and human hepatocellular carcinoma HepG2 cells, respectively. Cell cycle analysis in MDA-MB-231 suggested ZL-3 inhibited cell growth through arresting cells at the G2/M phase of the cell cycle. Further tests showed a significant improvement in aqueous solubility of ZL-1 and ZL-7. This study suggested that glycosylation could be utilized as a useful strategy to optimize lamellarin D derivatives as Topo I inhibitors and anticancer agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2021.113226DOI Listing

Publication Analysis

Top Keywords

glycosylated derivatives
8
marine natural
8
natural product
8
human colon
8
colon cancer
8
cancer hct116 cells
8
hct116 cells human
8
human hepatocellular
8
hepatocellular carcinoma
8
carcinoma hepg2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!