Birds developed endothermy and four-chambered high-performance heart independently from mammals. Though avian embryos are extensively studied and widely used as various models for heart research, little is known about cardiac physiology of adult birds. Meanwhile, cardiac electrophysiology is in search for easily accessible and relevant model objects which resemble human myocardium in the pattern of repolarizing currents (I, I, I and I). This study focuses on the configuration of electrical activity and electrophysiological phenotype of working myocardium in adult Japanese quails (Coturnix japonica). The resting membrane potential and action potential (AP) waveform in quail atrial myocardium were similar to that in working myocardium of rodents. Using whole-cell patch clamp and sharp glass microelectrodes, we demonstrated that the repolarization of quail atrial and ventricular myocardium is determined by voltage-dependent potassium currents I, I and I - the latter was previously considered as an exclusive evolutionary feature of mammals. The specific blockers of these currents, dofetilide (3 μmol l), HMR 1556 (30 μmol l) and 4-aminopyridine (3 mmol l), prolonged AP in both ventricular and atrial myocardial preparations. The expression of the corresponding channels responsible for these currents in quail myocardium was investigated with quantitative RT-PCR and western blotting. In conclusion, the described pattern of repolarizing ionic currents and channels in quail myocardium makes this species a novel and suitable experimental model for translational cardiac research and reveals new information related to the evolution of cardiac electrophysiology in vertebrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpa.2021.110919 | DOI Listing |
J Clin Med
January 2025
Hospital Virgen de la Arrixaca, 30120 Murcia, Spain.
Accurate segmentation of the left ventricular myocardium in cardiac MRI is essential for developing reliable deep learning models to diagnose left ventricular non-compaction cardiomyopathy (LVNC). This work focuses on improving the segmentation database used to train these models, enhancing the quality of myocardial segmentation for more precise model training. We present a semi-automatic framework that refines segmentations through three fundamental approaches: (1) combining neural network outputs with expert-driven corrections, (2) implementing a blob-selection method to correct segmentation errors and neural network hallucinations, and (3) employing a cross-validation process using the baseline U-Net model.
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA.
Our study aims to assess the robustness of myocardial radiomic texture features (RTF) to segmentation variability and variations across scanners with different field strengths, addressing concerns about reliability in clinical practices. We conducted a retrospective analysis on 45 pairs of CMR T1 maps from 15 healthy volunteers using 1.5 T and 3 T Siemens scanners.
View Article and Find Full Text PDFBackground: Annually, approximately 7.6 million individuals experience a new ischemic stroke, and roughly 25% of all ischemic strokes are cardiogenic in origin, carrying a high risk of recurrence, death and disability. To prevent future ischemic strokes, especially in younger individuals, it is crucial to detect and treat direct and indirect cardioembolic sources.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg im Breisgau, Germany.
: To validate the automated quantification of cardiac chamber volumes and myocardial mass on non-contrast chest CT using cardiac MR (CMR) as a reference. : We retrospectively included 53 consecutive patients who received non-contrast chest CT and CMR within three weeks. A deep learning model created cardiac segmentations on axial soft-tissue reconstructions from CT, covering all four cardiac chambers and the left ventricular myocardium.
View Article and Find Full Text PDFResusc Plus
January 2025
Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital, Edmonton, Alberta, Canada.
Background: Epinephrine is currently the only recommended cardio-resuscitative medication for use in neonatal cardiopulmonary resuscitation (CPR), as per consensus of science and treatment recommendations. An alternative medication, vasopressin, may be beneficial, however there is limited data regarding its effect on cardiac and brain tissue following recovery from neonatal CPR.
Aim: To compare the effects of vasopressin and epinephrine during resuscitation of asphyxiated post-transitional piglets on cardiac and brain tissue injury.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!