Proteomic analysis of young sugarcane plants with contrasting salt tolerance.

Funct Plant Biol

Department of Biologia Aplicada à Agropecuária, Universidade Estadual Paulista 'Julio de Mesquita Filho', 14884-900 Jaboticabal, SP, Brasil.

Published: May 2021

Soil salinity affects sugarcane (Saccharum officinale L.) production in arid and semiarid climates, severely reducing productivity. This study aimed to identify differentially regulated proteins in two cultivars that differ markedly in tolerance of saline soil. Plants were grown for 30 days and then subjected to treatments of 0 and 160 mM NaCl for 15 days. The tolerant cultivar showed a 3-fold upregulation of lipid metabolising enzymes, GDSL-motif lipases, which are associated with defence to abiotic stress, and which were not upregulated in the sensitive cultivar. Lipoxygenase was 2-fold upregulated in the tolerant cultivar but not in the sensitive cultivar, as were Type III chlorophyll a/b binding proteins. Other differences were that in the sensitive cultivar, the key enzyme of C4 photosynthesis, phosphoenolpyruvate carboxylase was downregulated, along with other chloroplast enzymes. Na+ concentrations had not reached toxic concentrations in either cultivar by this time of exposure to salt, so these changes would be in response to the osmotic effect of the soil salinity, and likely be in common with plants undergoing drought stress.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP20314DOI Listing

Publication Analysis

Top Keywords

sensitive cultivar
12
soil salinity
8
tolerant cultivar
8
cultivar
6
proteomic analysis
4
analysis young
4
young sugarcane
4
sugarcane plants
4
plants contrasting
4
contrasting salt
4

Similar Publications

Root Development of Tomato Plants Infected by the Cacao Pathogen Moniliophthora perniciosa Is Affected by Limited Sugar Availability.

Plant Cell Environ

January 2025

Centro de Energia Nuclear na Agricultura, Universidade de São Paulo (USP), Piracicaba, São Paulo, Brazil.

Moniliophthora perniciosa is the causal agent of the witches' broom disease of cacao (Theobroma cacao), and it can infect the tomato (Solanum lycopersicum) 'Micro-Tom' (MT) cultivar. Typical symptoms of infection are stem swelling and axillary shoot outgrowth, whereas reduction in root biomass is another side effect. Using infected MT, we investigated whether impaired root growth derives from hormonal imbalance or sink competition.

View Article and Find Full Text PDF

This research investigates the interactive effects of elevated ozone (eO) and carbon dioxide (eCO) on stomatal morphology and leaf anatomical characteristics in two wheat cultivars with varying O sensitivities. Elevated O increased stomatal density and conductance, causing oxidative stress and cellular damage, particularly in the O-sensitive cultivar PBW-550 (PW), compared to HUW-55 (HW). Conversely, eCO reduced stomatal density and pore size, mitigating O-induced damage by limiting O influx.

View Article and Find Full Text PDF

In the present study, we identified 22 significant SNPs, eight stable QTLs and 17 potential candidate genes associated with 100-seed weight in soybean. Soybean is an economically important crop that is rich in seed oil and protein. The 100-seed weight (HSW) is a crucial yield contributing trait.

View Article and Find Full Text PDF

Salt tolerance is a critical trait for plant survival and productivity in saline environments. Development of salt tolerant crops is a practical strategy for addressing soil salinity issues. In this study, RNA-Seq analysis was performed using two wheat cultivars with contrasting salt tolerance (Neixiang188, tolerant and Barra, sensitive) at 6 h and 24 h after salinity treatment to determine the genetic variations reflected in the RNA expression patterns and identify key genes associated with salt tolerance.

View Article and Find Full Text PDF

Time-Course Transcriptomics Analysis Reveals Molecular Mechanisms of Salt-Tolerant and Salt-Sensitive Cotton Cultivars in Response to Salt Stress.

Int J Mol Sci

January 2025

Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China.

Salt stress is an environmental factor that limits plant seed germination, growth, and survival. We performed a comparative RNA sequencing transcriptome analysis during germination of the seeds from two cultivars with contrasting salt tolerance responses. A transcriptomic comparison between salt-tolerant cotton cv Jin-mian 25 and salt-sensitive cotton cv Su-mian 3 revealed both similar and differential expression patterns between the two genotypes during salt stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!