Background: Schizophrenia (SZ) is a severe mental disease with highly heterogeneous clinical manifestations and pathological mechanisms. Schizophrenia is linked to abnormalities in cell membrane phospholipids and blunting of the niacin skin flush response, but the associations between these phenotypes and its molecular pathogenesis remain unclear. This study aimed to describe the PLA2/COX pathway, the key link between phospholipids and niacin flush, and to illustrate the pathogenic mechanisms in schizophrenia that mediate the above phenotypes.
Methods: A total of 166 patients with schizophrenia and 54 healthy controls were recruited in this study and assigned to a discovery set and a validation set. We assessed the mRNA levels of 19 genes related to the PLA2/COX cascade in leukocytes by real-time PCR. Plasma IL-6 levels were measured with an ELISA kit. Genetic association analysis was performed on PLA2G4A and PTGS2 to investigate their potential relationship with blunted niacin-skin response in an independent sample set.
Findings: Six of the 19 genes in the PLA2/COX pathway exhibited significant differences between schizophrenia and healthy controls. The disturbance of the pathway indicates the activation of arachidonic acid (AA) hydrolysis and metabolization, resulting in the abnormalities of membrane lipid homeostasis and immune function, further increasing the risk of schizophrenia. On the other hand, the active process of AA hydrolysis from cell membrane phospholipids and decreased transcription of CREB1, COX-2 and PTGER4 may explain the reported findings of a blunted niacin response in schizophrenia. The significant genetic associations between PLA2G4A and PTGS2 with the niacin-skin responses further support the inference.
Interpretation: These results suggested that the activation of AA hydrolysis and the imbalance in COX-1 and COX-2 expression are involved in the pathogenesis of schizophrenia and blunting of the niacin flush response.
Funding: This work was supported by the National Key R&D Program of China (2016YFC1306900, 2016YFC1306802); the National Natural Science Foundation of China (81971254, 81771440, 81901354); Interdisciplinary Program of Shanghai Jiao Tong University (ZH2018ZDA40, YG2019GD04, YG2016MS48); Grants of Shanghai Brain-Intelligence Project from STCSM (16JC1420500); Shanghai Key Laboratory of Psychotic Disorders (13DZ2260500); and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01); China Postdoctoral Science Foundation (2018M642029, 2018M630442, 2019M661526, 2020T130407); Natural Science Foundation of Shanghai (20ZR1426700); and Startup Fund for Youngman Research at SJTU (19 × 100040033).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892797 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2021.103239 | DOI Listing |
Comput Biol Chem
January 2025
Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia. Electronic address:
Menthol is a naturally occurring cyclic terpene alcohol and is the major component of peppermint and corn mint essential oils extracted from Mentha piperita L. and Mentha arvensis L..
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea, Wales SA2 8PP, United Kingdom.
Large herbivores are in decline in much of the world, including sub-Saharan Africa, and true apex carnivores like the lion () decline in parallel with their prey. As a consequence, competitively subordinate carnivores like the African wild dog () are simultaneously experiencing a costly reduction in resources and a beneficial reduction in dominant competitors. The net effect is not intuitively obvious, but wild dogs' density, survival, and reproduction are all low in areas that are strongly affected by prey depletion.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Computer Science, Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology, Trondheim 7030, Norway.
Replication and the reported crises impacting many fields of research have become a focal point for the sciences. This has led to reforms in publishing, methodological design and reporting, and increased numbers of experimental replications coordinated across many laboratories. While replication is rightly considered an indispensable tool of science, financial resources and researchers' time are quite limited.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Cognitive Science Program, Indiana University, Bloomington, IN 47405.
Automation transformed various aspects of our human civilization, revolutionizing industries and streamlining processes. In the domain of scientific inquiry, automated approaches emerged as powerful tools, holding promise for accelerating discovery, enhancing reproducibility, and overcoming the traditional impediments to scientific progress. This article evaluates the scope of automation within scientific practice and assesses recent approaches.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Computer Science, University of Manchester, Manchester M13 9PL, United Kingdom.
The preference for simple explanations, known as the parsimony principle, has long guided the development of scientific theories, hypotheses, and models. Yet recent years have seen a number of successes in employing highly complex models for scientific inquiry (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!