Treatment of oil sands process affected waters by constructed wetlands: Evaluation of designs and plant types.

Sci Total Environ

Watershed Hydrology & Ecology Research Division, Water Science & Technology Directorate, Environment & Climate Change Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada.

Published: June 2021

Constructed wetland treatment systems (CWTS)s can be used to treat various wastewaters. The main constituent in oil sands process-affected water (OSPW) with uncertain treatment by CWTS are naphthenic acid fraction compounds (NAFC)s. The NAFCs are also among the primary contributors of toxicity to aquatic organisms. While there is preliminary evidence that some CWTSs are capable of treating OSPW for future potential discharge, there is little information comparing the effectiveness and efficiencies of different CWTS designs. Obtaining large volumes of OSPW for testing can be difficult, and while it is known that synthetic NAFCs are simpler and have different toxicity than OSPW-NAFCs, it is unknown whether they could serve as a proxy for optimization of CWTS design and operation. This study presents a comprehensive comparison of CWTS performance operated with both synthetic OSPW and OSPW for four CWTS designs differing in plant type, aeration, flow path, water depth, and substrate type. This study evaluated the potential biodegradation of NAFCs including: (1) decrease in total NAFC concentration, (2) shifts in O-NAFC fractions from O- to O-, O-, and O-NAFC, (3) decrease in carbon number, (4) decrease of the double bond equivalencies (DBE), and (5) change in toxicity of the waters to test organisms. CWTS planted with Sedge achieved the greatest extent of NAFC treatment and detoxification regardless of design. Although CWTSs planted with Cattail and Bulrush also degraded NAFCs and decreased toxicity, a greater hydraulic retention time was required, and the total extent of treatment was less than the CWTSs planted with Sedge. While synthetic OSPW was more toxic and experienced faster degradation rates, it showed similar trends to OSPW in terms of CWTS design efficiencies and function. Although synthetic OSPW would not be appropriate for modelling or scaling of CWTSs, it can be useful for testing designs and operating conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.145508DOI Listing

Publication Analysis

Top Keywords

synthetic ospw
12
oil sands
8
ospw
8
cwts designs
8
cwts design
8
planted sedge
8
cwtss planted
8
cwts
7
treatment
5
cwtss
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!