This study compared chemical extraction methods for the prediction of PAH bioaccumulation in ryegrass (Lolium multiflorum) roots in four Manufactured Gas Plant (MGP) historically (>50 years) contaminated soils. The in-vitro methods compared were butanol (BuOH), non-buffered and buffered 2-hydroxypropyl-β-cyclodextrin extractions (HPCD, Buf-HPCD), potassium persulfate oxidation (KPS), solid phase extraction using Tenax resin (Tenax), and polyoxymethylene solid-phase extraction (POM). Extractions were directly compared with bioaccumulation and modelled using equilibrium partitioning theory (EqPT) with a combination of different partitioning parameters (K and K values) that aimed to improve predictions. The PAH accumulation in plant roots showed good correlation with concentrations in soils, and higher concentrations of the 4-6 ring PAHs compared with 2-3 ring PAHs. Plant accumulation of 16 PAHs in L. multiflorum was estimated within a factor of 5 using direct comparison for all bioaccessibility extraction methods. Accumulation values predicted using the calculation approach depended on the combination of K, K parameters and root components (total lipid vs total dry weight) used in calculations. Using K values derived from historically contaminated soils improved accuracy of predicted total root accumulation although precision was low. The combined contribution of PAH in lipid and carbohydrate root components (total dry weight) overestimated accumulation and a lipid only approach using generic partitioning parameters provided more accurate and precise approximation of bioaccumulation in roots of L. multiflorum in the soils. Overall, Tenax, POM and HPCD-based extractions showed promising results for predicting L. multiflorum root accumulation using the different approaches. This work significantly extends current knowledge for integrating simple chemical extractions into ecological risk assessment frameworks for the prediction of plant PAH bioavailability in historically contaminated soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.144783DOI Listing

Publication Analysis

Top Keywords

contaminated soils
16
historically contaminated
12
lolium multiflorum
8
simple chemical
8
extraction methods
8
partitioning parameters
8
ring pahs
8
root components
8
components total
8
total dry
8

Similar Publications

Russia's invasion of Ukraine continues to have a devastating effect on the well-being of Ukrainians and their environment. We evaluated a major environmental hazard caused by the war: the potential for groundwater contamination in proximity to the Zaporizhzhia Nuclear Power Plant (NPP). We quantified groundwater vulnerability with the DRASTIC index, which was originally developed by the United States Environmental Protection Agency and has been used at various locations worldwide to assess relative pollution potential.

View Article and Find Full Text PDF

Unlocking Biochar's Potential: Innovative Strategies for Sustainable Remediation of Heavy Metal Stress in Tobacco Plants.

Scientifica (Cairo)

January 2025

Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

Tobacco, being a globally cultivated crop, holds significant social and economic importance. Tobacco plants are susceptible to the adverse effects of heavy metals (HMs), particularly cadmium (Cd), which hinders root development, disrupts water balance, and impedes nutrient absorption. Higher concentrations of HMs, especially Cd, naturally accumulate in tobacco leaves due to complex interactions within the plant-soil continuum.

View Article and Find Full Text PDF

The natural environment and public health are gravely threatened by the enrichment of soil potentially toxic elements (PTEs). To explore the contamination level, sources and human health risks posed by PTEs, high-density soil sampling was carried out in the upper Wei River region (UWRR). The results demonstrated that the pollution risk and ecological risk in UWRR as a whole were at a low level, but there were moderate or higher ecological risks of Hg and Cd in some areas.

View Article and Find Full Text PDF

Enewetak Atoll underwent 43 historical nuclear tests from 1948 to 1958, including the first hydrogen bomb test, resulting in a substantial nuclear material fallout contaminating the Atoll and the lagoon waters. The radionuclide fallout material deposited in lagoon sediments and soil on the islands will remain for decades to come. With intensifying climate and extreme weather events, the possibility of redistribution of deposited radionuclide material has become a great concern.

View Article and Find Full Text PDF

The study aims to evaluate how bacteriocin and extracellular polymeric substances (EPS) can influence the development of active packaging for food. The components might enhance the performance of packaging materials in terms of their physicochemical properties and their effectiveness in preserving food. Bacteriocin and EPS exert a significant effect in blocking the transmission of UV and visible light radiations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!