Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The maintenance of telomeres, which are specialized stretches of DNA found at the ends of linear chromosomes, is a crucial step for the immortalization of cancer cells. Approximately 10-15 % of cancer cells use a homologous recombination-based mechanism known as the Alternative Lengthening of Telomeres (ALT) pathway to maintain their telomeres. Telomeres in general pose a challenge to DNA replication owing to their repetitive nature and potential for forming secondary structures. Telomeres in ALT cells especially are subject to elevated levels of replication stress compared to telomeres that are maintained by the enzyme telomerase, in part due to the incorporation of telomeric variant repeats at ALT+ telomeres, their on average longer lengths, and their modified chromatin states. Many DNA metabolic strategies exist to counter replication stress and to protect stalled replication forks. The role of proliferating cell nuclear antigen (PCNA) as a platform for recruiting protein partners that participate in several of these DNA replication and repair pathways has been well-documented. We propose that many of these pathways may be active at ALT telomeres, either to facilitate DNA replication, to manage replication stress, or during telomere extension. Here, we summarize recent evidence detailing the role of PCNA in pathways including DNA secondary structure resolution, DNA damage bypass, replication fork restart, and DNA damage synthesis. We propose that an examination of PCNA and its post-translational modifications (PTMs) may offer a unique lens by which we might gain insight into the DNA metabolic landscape that is distinctively present at ALT telomeres.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dnarep.2021.103055 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!