The combination of Raman microscopy and electron microscopy - Practical considerations of the influence of vacuum on Raman microscopy.

Micron

Graz Centre for Electron Microscopy (ZFE), Steyrergasse 17, 8010, Graz, Austria; Institute of Electron Microscopy and Nanoanalysis (FELMI), Graz University of Technology (TU Graz), NAWI Graz, Steyrergasse 17, 8010, Graz, Austria. Electronic address:

Published: April 2021

Due to the specific vacuum requirements for scanning electron microscopy (SEM), the Raman microscope has to operate in vacuum in a correlative Raman-SEM, which is a type of microscope combination that has recently increased in popularity. This works considers the implications of conducting Raman microscopy under vacuum, as opposed to operating in ambient air, the standard working regime of this technique. We show that the performance of the optics of the Raman microscope are identical in both conditions, but laser beam-sample interactions, such as fluorescent bleaching and beam damage, might be different due to the lack of oxygen in vacuum. The bleaching of the fluorescent background appears to be mostly unaffected by the lack of oxygen, except when very low laser powers are used. Regarding laser-beam damage, organic samples are more sensitive in vacuum than in air, whereas no definite verdict is possible for inorganic samples. These findings have practical implications for the application of correlative Raman-SEM, as low laser powers, or in extreme cases cryo-methods, need to be used for organic samples that appear only moderately beam sensitive under usual ambient air.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2021.103029DOI Listing

Publication Analysis

Top Keywords

raman microscopy
12
electron microscopy
8
raman microscope
8
correlative raman-sem
8
ambient air
8
lack oxygen
8
low laser
8
laser powers
8
organic samples
8
vacuum
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!