At "Instituto de Alergias y Autoinmunidad Dr. Maximiliano Ruiz Castañeda, A.C." in Mexico City, a non-traditional health care center focused on the treatment of autoimmune and allergic diseases using personalized medicine, an alternative treatment referred to as an "immune-modulator" has been developed. In this study, we will refer to this treatment substance as the "immune-modulator." In brief, a urine sample is collected from the patient and processed to obtain the peptide fraction, which is conditioned and then administered sublingually to the patient. Sample processing involves multiple steps aimed at the removal of toxic compounds and enrichment for cytokines, growth factors, and other immune peptides that may contribute to the function of the immune-modulator. This treatment has been administered for many years, and patients testify that it is useful and reliable. Despite the benefits of this treatment, the molecular mechanisms underlying its effects have not been thoroughly investigated. Therefore, this study aims to identify immunoregulatory peptides, such as cytokines and growth factors, in the immune-modulator. Urine and immune-modulator concentrations of cytokines and growth factors were assessed using a Luminex assay. Twenty-one cytokines and growth factors were identified in immune-modulator samples. MCP-1 was identified in 100% of the samples; MIP-1β, IL-8, RANTES, INF-γ, and IP-10 were identified in approximately 65-70% of samples; IL5, IL-1B, and IL-17 in 50-60%; eotaxin, VEGF, IL-6, and FGF in about 40%; MIP-1α, IL-9, GM-CSF, G-CSF, IL-12, and IL-15 in about 20-30%; and IL-13 and PDGF-bb were identified in <6% of samples. Additionally, patients exhibited significant changes in IL-1β, IFN-γ, and MCP-1 concentrations after treatment with the immune-modulator, whereas healthy individuals showed no significant change in response to the treatment. The immune-modulator is an alternative treatment based on the administration of cytokines and growth factors obtained from the urine of patients. In this study, its composition was characterized. The isolated products could be responsible for the effects of the immune-modulator. Further trials are required to evaluate the effective delivery of these molecules by the administration route described.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cyto.2021.155427DOI Listing

Publication Analysis

Top Keywords

cytokines growth
20
growth factors
20
autoimmune allergic
8
allergic diseases
8
cytokines
5
factors
5
treatment
5
factors biologic
4
biologic product
4
product patients'
4

Similar Publications

Alginate-polylysine-alginate (APA) microencapsulated transgenic human amniotic epithelial cells ameliorate fibrosis in hypertrophic scars.

Inflamm Res

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.

Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.

View Article and Find Full Text PDF

Pericytes mediate neuroinflammation via Fli-1 in endotoxemia and sepsis in mice.

Inflamm Res

January 2025

Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA.

Background: Sepsis-associated encephalopathy (SAE) often results from neuroinflammation. Recent studies have shown that brain platelet-derived growth factor receptor β (PDGFRβ) cells, including pericytes, may act as early sensors of infection by secreting monocyte chemoattractant protein-1 (MCP-1), which transmits inflammatory signals to the central nervous system. The erythroblast transformation-specific (ETS) transcription factor Friend leukemia virus integration 1 (Fli-1) plays a critical role in inflammation by regulating the expression of key cytokines, including MCP-1.

View Article and Find Full Text PDF

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Background: HIV and tuberculosis (TB) co-infection poses a significant health challenge, particularly when involving the central nervous system (CNS), where it leads to severe morbidity and mortality. Current treatments face challenges such as drug resistance, immune reconstitution inflammatory syndrome (IRIS), and persistent inflammation. Glutathione (GSH) has the therapeutic potential to enhance treatment outcomes by improving antibiotic efficacy, reducing inflammation, and mitigating immune dysfunction.

View Article and Find Full Text PDF

Knee osteoarthritis (OA) is a common and debilitating disorder marked by joint degradation, inflammation, and persistent pain. This study examined the possible therapeutic effects of curcumin and vitamin D on OA progression and pain in a rat knee OA model by anterior cruciate ligament transection and meniscectomy (ACLT + MMx). Male Wistar rats were categorized into five groups: control, curcumin-treated (100 mg/kg/day), vitamin D-treated (25 µg/kg/day), a combination of vitamin D and curcumin, and sham-operated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!