AI Article Synopsis

  • Early detection of pancreatic ductal adenocarcinoma (PDAC) is crucial for improving patient survival, but current carbohydrate biomarkers like CA19-9 and sTRA are not effective in differentiating PDAC from other cancers or non-cancerous conditions.* -
  • Researchers used imaging mass spectrometry (IMS) and immunofluorescence to analyze the N-glycome in pancreatic tissues, revealing distinct differences in glycan structures and localization between healthy and cancerous tissues.* -
  • The study found unique sulfated N-glycans in normal pancreatic islets and identified distinctive glycan patterns associated with CA19-9 and sTRA, suggesting potential new biomarkers that could enhance PDAC diagnosis.*

Article Abstract

The early detection of pancreatic ductal adenocarcinoma (PDAC) is a complex clinical obstacle yet is key to improving the overall likelihood of patient survival. Current and prospective carbohydrate biomarkers carbohydrate antigen 19-9 (CA19-9) and sialylated tumor-related antigen (sTRA) are sufficient for surveilling disease progression yet are not approved for delineating PDAC from other abdominal cancers and noncancerous pancreatic pathologies. To further understand these glycan epitopes, an imaging mass spectrometry (IMS) approach was used to assess the N-glycome of the human pancreas and pancreatic cancer in a cohort of patients with PDAC represented by tissue microarrays and whole-tissue sections. Orthogonally, these same tissues were characterized by multiround immunofluorescence that defined expression of CA19-9 and sTRA as well as other lectins toward carbohydrate epitopes with the potential to improve PDAC diagnosis. These analyses revealed distinct differences not only in N-glycan spatial localization across both healthy and diseased tissues but importantly between different biomarker-categorized tissue samples. Unique sulfated biantennary N-glycans were detected specifically in normal pancreatic islets. N-glycans from CA19-9-expressing tissues tended to be biantennary, triantennary, and tetra-antennary structures with both core and terminal fucose residues and bisecting GlcNAc. These N-glycans were detected in less abundance in sTRA-expressing tumor tissues, which favored triantennary and tetra-antennary structures with polylactosamine extensions. Increased sialylation of N-glycans was detected in all tumor tissues. A candidate new biomarker derived from IMS was further explored by fluorescence staining with selected lectins on the same tissues. The lectins confirmed the expression of the epitopes in cancer cells and revealed different tumor-associated staining patterns between glycans with bisecting GlcNAc and those with terminal GlcNAc. Thus, the combination of lectin-immunohistochemistry and lectin-IMS techniques produces more complete information for tumor classification than the individual analyses alone. These findings potentiate the development of early assessment technologies to rapidly and specifically identify PDAC in the clinic that may directly impact patient outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724603PMC
http://dx.doi.org/10.1074/mcp.RA120.002256DOI Listing

Publication Analysis

Top Keywords

n-glycans detected
12
imaging mass
8
mass spectrometry
8
pancreatic cancer
8
triantennary tetra-antennary
8
tetra-antennary structures
8
bisecting glcnac
8
tumor tissues
8
tissues
7
pancreatic
5

Similar Publications

Ionization Characteristics of Glycan Homologues in Various Modes of Electrospray.

J Am Soc Mass Spectrom

December 2024

Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States.

Fluorescence labeled glycan homologous mixtures were quantified using fluorescence and then used to evaluate ionization performances in electrospray ionization at micro, nano, and femto flow modes. nanoESI produced higher (2+ and 3+) charged ions adducted with sodium and calcium. In comparison, femtoESI was found to favor the generation of [M + H] ions against metal adducts, even with nonvolatile salts up to 1 mM for NaCl and 100 μM for CaCl.

View Article and Find Full Text PDF

Polypeptide N-acetylgalactosaminyltransferase-like protein 5 (GALNTL5) was identified as a pp-GalNAc-T family gene. Nevertheless, GALNTL5 has no glycosyltransferase activity. In mice, Galntl5 expression is restricted to differentiating spermatids, and haploinsufficiency leads to immotile spermatozoa with an aberrant protein composition.

View Article and Find Full Text PDF

Background: Worldwide, hepatocellular carcinoma (HCC) is the second most lethal cancer, although early-stage HCC is amenable to curative treatment and can facilitate long-term survival. Early detection has proved difficult, as proteomics, transcriptomics, and genomics have been unable to discover suitable biomarkers.

Methods: To find new biomarkers of HCC, we utilized a spatial omics N-glycan imaging method to identify altered glycosylation in cancer tissue (n = 53) and in paired serum of individuals with HCC (n = 23).

View Article and Find Full Text PDF

Cross-reactive carbohydrate determinants (CCDs) are complex N-glycans shared among allergens of plant, insect venom, and nematode origin. In allergic humans, IgE anti-CCD often develop and cause discrepancies between serological and skin tests. Overall, CCD-IgE are believed to be of low pathogenic relevance.

View Article and Find Full Text PDF

Glycoconjugates, including glycans on proteins and lipids, have obtained significant attention due to their critical roles in both intracellular and intercellular biological functions and processes. Notably, recent discoveries have revealed the presence of glycosylated RNAs (glycoRNAs) on cell surfaces. Despite the well-characterized roles of RNA modifications, RNA glycosylation remains relatively unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!