A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploration and verification of the feasibility of sulfide-driven partial denitrification coupled with anammox for wastewater treatment. | LitMetric

Exploration and verification of the feasibility of sulfide-driven partial denitrification coupled with anammox for wastewater treatment.

Water Res

Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China. Electronic address:

Published: April 2021

Anaerobic ammonia oxidation (anammox) is a well-developed biotechnology for treating high-strength ammonium wastewaters. Recently, partial denitrification has been considered as an alternative to supply anammox with the required nitrite. In this study, a process of sulfide-driven partial denitrification and anammox (SPDA) was developed and operated continuously in an upflow anaerobic sludge blanket (UASB) reactor for 392 days. This reactor was fed with synthetic wastewater containing 100 mgN/L nitrate, 80 mgN/L ammonium and 20-80 mgS/L sulfide. After 160 days of operation, the reactor reached stable performance, and the nitrogen removal efficiency and rate were maintained at 80% and 0.29 kgN/(m³•d), respectively. The estimated nitrogen removal via anammox and sulfide-driven denitrification were 87.2% and 12.8%. Additional batch experiments were conducted to investigate the effects of sulfide on anammox and the mechanisms of nitrogen removal in the SPDA system. The following results were obtained: (1) sulfide had an inhibitory effect on the specific anammox activity with IC of 9.7 mgS-HS/L. (2) The rapid oxidation of sulfide by sulfur-oxidizing bacteria (SOB) could relieve the toxic effects of sulfide on the anammox in the SPDA system. (3) Sulfide bio-oxidation was a two-step reaction with biologically produced elemental sulfur (BPS) as the intermediate, and the second step using BPS as the electron donor, can efficiently produce nitrite via partial denitrification (NO → NO) as a supply for anammox. Finally, a high-throughput sequencing analysis identified Thiobacillus and Sulfurimonas as the dominant genera of SOB in the SPDA system, and Candidatus Kuenenia as the dominant anammox bacteria. Overall, this research gives the foundation for the practical application of sulfide-driven partial denitrification and anammox process in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.116905DOI Listing

Publication Analysis

Top Keywords

partial denitrification
20
sulfide-driven partial
12
nitrogen removal
12
spda system
12
anammox
11
supply anammox
8
denitrification anammox
8
anammox spda
8
effects sulfide
8
sulfide anammox
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!