Objectives: Estrogen plays a critical role in the development and apoptosis of oocytes. Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions including the regulation of reproduction. This study aimed to determine the effect of autophagy regulated by the biologically active form of estrogen (17β-estradiol) in porcine oocyte maturation in vitro.
Materials And Methods: We measured the effects of oocyte developmental competencies and autophagic activity in the porcine oocyte regulated by 17β-estradiol using autophagic inhibitor (Autophinib). In addition, we studied the role of autophagy in reactive oxygen species (ROS) levels, mitochondrial distribution, Ca production, mitochondrial membrane potential (ΔΨm), and early apoptosis by caspase-3, -8 activity in the mature oocytes.
Results: The results showed that the oocyte meiotic progression and early embryonic development were gradually decreased with Autophinib treatment, which was improved by 17β-estradiol. Immunofluorescence experiments revealed that 17β-estradiol primarily could promote the autophagy in the mature oocytes, and block the reduced-autophagic events by Autophinib. Moreover, 17β-estradiol improved the Autophinib induced high ROS levels, abnormal mitochondrial distribution and low Ca production in mature oocytes. Analyses of early apoptosis and ΔΨm showed that autophagy inhibition was accompanied by increased cellular apoptosis, and 17β-estradiol reduced apoptosis rates of mature oocytes. Importantly, autophagy was downregulated by treatment with Autophinib, an activation of caspase-8 and cleaved caspase-3 increased. Those effects were abolished by 17β-estradiol, which could upregulate autophagy.
Conclusions: Our study have showed important implications that 17β-estradiol could promote efficacy of the development of porcine oocytes, enhance the autophagy, reduce ROS levels and apoptosis activity in vitro maturation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsbmb.2021.105826 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!