Efficacy of treated sodium alginate (TSA) and activated carbon fibre (ACF) for aqueous Pb(II) uptake was comparatively investigated. By employing FTIR, SEM, EDX, XRD, point of zero charges and surface area measurements, the available functional groups, morphology, crystallinity, surface charge and surface areas of both adsorbents were respectively elucidated. The Pb(II) uptake performance of both adsorbents was also studied via batch mode at varied process conditions. The experimental isotherm and kinetic data for both adsorbents were best fitted to nonlinear forms of Langmuir and pseudo-first-order models, respectively. Similarly, intraparticle diffusion was the sole controlling mechanism. Despite the huge variation in the surface area, TSA (7.8 m/g) with high carboxyl content (395.6 meq-COOH/100 g of sample) performed better by all standards than the ACF (975 m/g). This finding showed that although the surface area of a given adsorbent is a key indicator of its adsorptive performance, the inherent surface functional groups play a superior role. The experimentally derived maximum adsorption capacities of 221.25 mg/g (for TSA) and 183.34 mg/g (for ACF) were recorded at an equilibrium time of 30 min and 45 min, respectively. Therefore, TSA and ACF demonstrated effectiveness for aqueous Pb (II) sequestration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.02.067 | DOI Listing |
Nanotechnology
January 2025
Institute of Nonlinear Optics, College of Science, JiuJiang University, Jiangxi 334000, People's Republic of China.
Titanium disulfide quantum dots (TiSQDs) has garnered significant research interest due to its distinctive electronic and optical properties. However, the effectiveness of TiSQDs in electromagnetic interference (EMI) shielding is influenced by various factors, including their size, morphology, monodispersity, tunable bandgap, Stokes shift and interfacial effects. In this study, we propose a systematic approach for the synthesis of TiSQDs with small size (3.
View Article and Find Full Text PDFJ Neuroendocrinol
January 2025
Department of Psychology, Columbia University, New York, New York, USA.
Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins. Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are porous, crystalline materials with high surface area, adjustable porosity, and structural tunability, making them ideal for diverse applications. However, traditional experimental and computational methods have limited scalability and interpretability, hindering effective exploration of MOF structure-property relationships. To address these challenges, we introduce, for the first time, a category-specific topological learning (CSTL), which combines algebraic topology with chemical insights for robust property prediction.
View Article and Find Full Text PDFMass Spectrom (Tokyo)
December 2024
Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-City, Toyama 939-0398, Japan.
Matrix-assisted laser desorption/ionization (MALDI), surface-assisted laser desorption/ionization (SALDI), and time-of-flight mass spectrometry (TOFMS) imaging are used for visualizing the spatial distribution of analytes. Mass spectrometry (MS) imaging of a sample with a rough surface with a uniform distribution of an analyte does not provide uniform ion intensities in the image. A shift in the value of the analyte ions is also observed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!