Purpose: N-Glycan profiling provides an indicator of the cellular potential for functional pairing with tissue lectins. Following the discovery of galectin expression by chondrocytes as a factor in osteoarthritis pathobiology, mapping of N-glycans upon their phenotypic dedifferentiation in culture and in fibroblast-like synoviocytes is a step to better understand glycobiological contributions to disease progression.

Experimental Design: The profiles of cellular N-glycans of human osteoarthritic chondrocytes and fibroblast-like synoviocytes were characterized by mass spectrometry. RT-qPCR experiments determined mRNA levels of 16 glycosyltransferases. Responsiveness of cells to galectins was quantified by measuring the mRNA level for interleukin-1β.

Results: The shift of chondrocytes to a fibroblastic phenotype (dedifferentiation) is associated with changes in N-glycosylation. The N-glycan profile of chondrocytes at passage 4 reflects characteristics of synoviocytes. Galectins-1 and -3 enhance expression of interleukin-1β mRNA in both cell types, most pronounced in primary culture. Presence of interleukin-1β leads to changes in sialylation in synoviocytes that favor galectin binding.

Conclusions And Clinical Relevance: N-Glycosylation reflects phenotypic changes of osteoarthritic cells in vitro. Like chondrocytes, fibroblast-like synoviocytes express N-glycans that are suited to bind galectins, and these proteins serve as inducers of pro-inflammatory markers in these cells. Synoviocytes can thus contribute to disease progression in osteoarthritis in situ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548877PMC
http://dx.doi.org/10.1002/prca.202000057DOI Listing

Publication Analysis

Top Keywords

fibroblast-like synoviocytes
16
chondrocytes fibroblast-like
12
n-glycan profiling
8
synoviocytes
7
chondrocytes
6
profiling chondrocytes
4
fibroblast-like
4
synoviocytes functional
4
functional glycomics
4
glycomics osteoarthritis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!