The control of nutrient availability is critical to large-scale manufacturing of biotherapeutics. However, the quantification of proteinogenic amino acids is time-consuming and thus is difficult to implement for real-time in situ bioprocess control. Genome-scale metabolic models describe the metabolic conversion from media nutrients to proliferation and recombinant protein production, and therefore are a promising platform for in silico monitoring and prediction of amino acid concentrations. This potential has not been realized due to unresolved challenges: (1) the models assume an optimal and highly efficient metabolism, and therefore tend to underestimate amino acid consumption, and (2) the models assume a steady state, and therefore have a short forecast range. We address these challenges by integrating machine learning with the metabolic models. Through this we demonstrate accurate and time-course dependent prediction of individual amino acid concentration in culture medium throughout the production process. Thus, these models can be deployed to control nutrient feeding to avoid premature nutrient depletion or provide early predictions of failed bioreactor runs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.27714DOI Listing

Publication Analysis

Top Keywords

amino acid
16
genome-scale metabolic
8
machine learning
8
acid concentrations
8
control nutrient
8
metabolic models
8
models assume
8
amino
5
models
5
metabolic network
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!