Acute Leukemia in Infants.

Curr Oncol Rep

Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7018, Cincinnati, OH, 45229, USA.

Published: February 2021

Purpose Of The Review: Infant leukemia is a rare, distinct subgroup of pediatric acute leukemias diagnosed in children under 1 year of age and characterized by unique, aggressive biology. Here, we review its clinical presentation, underlying molecular biology, current treatment strategies, and novel therapeutic approaches.

Recent Findings: Infant leukemias are associated with high-risk molecular features and high rates of chemotherapy resistance. International collaborative clinical trials have led to better understanding of the underlying molecular biology, refined risk-based stratification, and investigated the use of hematopoietic stem cell transplantation. However, intensification of chemotherapy has failed to improve outcomes, and current regimens are associated with significant treatment-related and long-term toxicities. Infants with leukemia remain a challenging group to treat. We must continue collaborative efforts to move beyond traditional cytotoxic chemotherapy, incorporate molecularly targeted strategies and immunotherapy, and increase access to clinical trials to improve outcomes for this high-risk group of patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11912-021-01021-1DOI Listing

Publication Analysis

Top Keywords

underlying molecular
8
molecular biology
8
clinical trials
8
improve outcomes
8
acute leukemia
4
leukemia infants
4
infants purpose
4
purpose review
4
review infant
4
infant leukemia
4

Similar Publications

Objectives: PD15, a novel natural steroidal saponin extracted from the rhizomes of Paris delavayi Franchet, has demonstrated a strong cytotoxic effect against HepG2 and U87MG cells. However, its therapeutic effects on colorectal cancer (CRC) and the underlying molecular mechanisms remain unclear.

Methods: MTT assay, clonogenic assay, Hoechst 33258 staining, flow cytometry, molecular docking, and western blot were used to investigate the mechanism of PD15 in HCT116 cell lines.

View Article and Find Full Text PDF

Background And Objectives: Cognitive deficits represent a major long-term complication of anti-leucine-rich, glioma-inactivated 1 encephalitis (LGI1-E). Although severely affecting patient outcomes, the structural brain changes underlying these deficits remain poorly understood. In this study, we hypothesized a link between white matter (WM) networks and cognitive outcomes in LGI1-E.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) driven by the mutation presents a formidable health challenge because of limited treatment options. MRTX1133 is a highly selective and first-in-class KRAS-G12D inhibitor under clinical development. Here, we report that the advanced glycosylation end product-specific receptor (AGER) plays a key role in mediating MRTX1133 resistance in PDAC cells.

View Article and Find Full Text PDF

Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs).

View Article and Find Full Text PDF

Quantifying the Chirality of Vibrational Modes in Helical Molecular Chains.

Phys Rev Lett

December 2024

Tel Aviv University, University of Pennsylvania, Department of Chemistry, Philadelphia, Pennsylvania 19104, USA and School of Chemistry, Tel Aviv 69978, Israel.

Chiral phonons have been proposed to be involved in various physical phenomena, yet the chirality of molecular normal modes has not been well defined mathematically. Here we examine two approaches for assigning and quantifying the chirality of molecular normal modes in double-helical molecular wires with various levels of twist. First, associating with each normal mode a structure obtained by imposing the corresponding motion on a common origin, we apply the continuous chirality measure (CCM) to quantitatively assess the relationship between the chirality-weighted normal mode spectrum and the chirality of the underlying molecular structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!