Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Candida albicans is frequently co-isolated with the Gram-negative bacterium, Pseudomonas aeruginosa. In vitro, the interaction is complex, with both species influencing each other. Not only does the bacterium kill hyphal cells of C. albicans through physical interaction, it also affects C. albicans biofilm formation and morphogenesis, through various secreted factors and cell wall components. The present study sought to expand the current knowledge regarding the interaction between C. albicans and P. aeruginosa, using transcriptome analyses of early static biofilms. Under these conditions, a total of 2,537 open reading frames (approximately 40% of the C. albicans transcriptome) was differentially regulated in the presence of P. aeruginosa. Upon deeper analyses it became evident that the response of C. albicans toward P. aeruginosa was dominated by a response to hypoxia, and included those associated with stress as well as iron and zinc homeostasis. These conditions may also lead to the observed differential regulation of genes associated with cell membrane synthesis, morphology, biofilm formation and phenotypic switching. Thus, C. albicans in polymicrobial biofilms with P. aeruginosa have unique transcriptional profiles that may influence commensalism as well as pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8049422 | PMC |
http://dx.doi.org/10.1093/g3journal/jkab042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!