A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Persistence of self-reactive CD8+ T cells in the CNS requires TOX-dependent chromatin remodeling. | LitMetric

Self-reactive CD8 T cells are important mediators of progressive tissue damage in autoimmune diseases, but the molecular program underlying these cells' functional adaptation is unclear. Here we characterize the transcriptional and epigenetic landscape of self-reactive CD8 T cells in a mouse model of protracted central nervous system (CNS) autoimmunity and compare it to populations of CNS-resident memory CD8 T cells emerging from acute viral infection. We find that autoimmune CD8 T cells persisting at sites of self-antigen exhibit characteristic transcriptional regulation together with distinct epigenetic remodeling. This self-reactive CD8 T cell fate depends on the transcriptional regulation by the DNA-binding HMG-box protein TOX which remodels more than 400 genomic regions including loci such as Tcf7, which is central to stemness of CD8 T cells. Continuous exposure to CNS self-antigen sustains TOX levels in self-reactive CD8 T cells, whereas genetic ablation of TOX in CD8 T cells results in shortened persistence of self-reactive CD8 T cells in the inflamed CNS. Our study establishes and characterizes the genetic differentiation program enabling chronic T cell-driven immunopathology in CNS autoimmunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7881115PMC
http://dx.doi.org/10.1038/s41467-021-21109-3DOI Listing

Publication Analysis

Top Keywords

cd8 cells
32
self-reactive cd8
20
cells
9
cd8
9
persistence self-reactive
8
remodeling self-reactive
8
cns autoimmunity
8
transcriptional regulation
8
cns
5
self-reactive
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!