Emergence of Enterococcus gallinarum carrying vanA gene cluster displaying atypical phenotypes.

Trop Biomed

Tropical Infectious Diseases Research and Education Centre (TIDREC), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.

Published: December 2016

Motile enterococci such as Enterococcus gallinarum has the ability to acquire and transfer antibiotic resistance genes to other enterococci. Even though infections caused by E. gallinarum are rare, the discovery of this bacteria in food sources and in clinical environments is disturbing. Here, we report the isolation and identification of E. gallinarum from the wound of a hospital in-patient. The isolate was identified using 16S rDNA sequencing. Isolate 146 harboured the vanA and vanC1 gene clusters, was vancomycin-susceptible, and displayed resistance to ampicillin, penicillin, erythromycin and teicoplanin. This isolate also showed intermediate resistance to linezolid and sequencing of the 23S rRNA peptidyl transferase region did not unveil any known mutations associated to the conferment of linezolid resistance. The presence of vanA did not confer resistance to vancomycin. Structural analyses into the Tn1546 transposon carrying the vanA gene revealed distinct genetic variations in the vanS, vanY and vanS-vanH intergenic region that could be associated to the atypical antibiotic resistance phenotypes of isolate 146. Finding from this study are suggestive of the occurrence of interspecies horizontal gene transfer and that similarities in genotypic characteristic may not necessarily correlate with actual antibiotic resistance pattern of E. gallinarum.

Download full-text PDF

Source

Publication Analysis

Top Keywords

antibiotic resistance
12
enterococcus gallinarum
8
carrying vana
8
vana gene
8
isolate 146
8
resistance
7
gallinarum
5
emergence enterococcus
4
gallinarum carrying
4
vana
4

Similar Publications

The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.

View Article and Find Full Text PDF

Detection and characterization of pathogenic Bacillus haynesii from Tribulus terrestris extract: ways to reduce its levels.

Braz J Microbiol

January 2025

Innovation and Drug Discovery, Sava Healthcare Limited, Research Center, MIDC, Block D1, Plot No. 17/6, Chinchwad, Pune, 411019, India.

Plant parts such as roots, bark, leaves, flowers, and fruits that hold ethnopharmacological significance are naturally prone to microbial contamination, influenced by environmental factors like moisture and humidity. This study focuses on assessing the microbial load in the raw material of Tribulus terrestris (TT). The primary bacterium isolated from the pulverized raw material was identified as Bacillus haynesii through 16S rRNA sequencing.

View Article and Find Full Text PDF

Transition metal complexes: next-generation photosensitizers for combating Gram-positive bacteria.

Future Med Chem

January 2025

Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R., China.

The rise of antibiotic-resistant Gram-positive bacterial infections poses a significant threat to public health, necessitating the exploration of alternative therapeutic strategies. A photosensitizer (PS) can convert energy from absorbed photon into reactive oxygen species (ROS) for damaging bacteria. This photoinactivation action bypassing conventional antibiotic mechanism is less prone to resistance development, making antibacterial photodynamic therapy (aPDT) highly efficient in combating Gram-positive bacteria.

View Article and Find Full Text PDF

Draft genome sequencing of a multidrug-resistant strain MBBL2 isolated from mastitic cow milk.

Microbiol Resour Announc

January 2025

Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh.

Milk from cows with mastitis is a primary source of bacteria harboring antibiotic resistance genes (ARGs), including . We present the genome sequence of strain MBBL2 isolated from mastitic cow milk, which contains numerous ARGs and virulence-associated genes potentially pathogenic to humans.

View Article and Find Full Text PDF

Unlabelled: Peptidoglycan (PG) is an important bacterial macromolecule that confers cell shape and structural integrity, and is a key antibiotic target. Its synthesis and turnover are carefully coordinated with other cellular processes and pathways. Despite established connections between the biosynthesis of PG and the outer membrane, or PG and DNA replication, links between PG and folate metabolism remain comparatively unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!