A Rationale for Drug Design Provided by Co-Crystal Structure of IC261 in Complex with Tubulin.

Molecules

Department of Clinical Research Management, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China.

Published: February 2021

Microtubules composed of α/β tubulin heterodimers are an essential part of the cytoskeleton of eukaryotic cells and are widely regarded as targets for cancer chemotherapy. IC261, which is discovered as an ATP-competitive inhibitor of serine/threonine-specific casein kinase 1 (CK1), has shown its inhibitory activity on microtubule polymerization in recent studies. However, the structural information of the interaction between tubulin and IC261 is still unclear. Here, we provided a high-resolution (2.85 Å) crystal structure of tubulin and IC261 complex, revealed the intermolecular interaction between tubulin and IC261, and analyzed the structure-activity relationship (SAR). Subsequently, the structure of tubulin-IC261 complex was compared with tubulin-colchicine complex to further elucidate the novelty of IC261. Furthermore, eight optimal candidate compounds of new IC261-based microtubule inhibitors were obtained through molecular docking studies. In conclusion, the co-crystal structure of tubulin-IC261 complex paves a way for the design and development of microtubule inhibitor drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916759PMC
http://dx.doi.org/10.3390/molecules26040946DOI Listing

Publication Analysis

Top Keywords

tubulin ic261
12
co-crystal structure
8
ic261 complex
8
interaction tubulin
8
structure tubulin-ic261
8
tubulin-ic261 complex
8
ic261
6
complex
5
tubulin
5
rationale drug
4

Similar Publications

A series of 3-benzylideneindolin-2-one compounds was designed and synthesized based on combretastatin A-4 and compound , a dual casein kinase (CK1)/tubulin polymerization inhibitor, taking into consideration the pharmacophore required for EGFR-tyrosine kinase inhibition. The new molecular entities provoked significant growth inhibition against PC-3, MCF-7 and COLO-205 at a 10 μM dose. Compounds 6-chloro-3-(2,4,6-trimethoxybenzylidene) indolin-2-one, and 5-methoxy-3-(2,4,6-trimethoxybenzylidene)indolin-2-one, showed potent activity against the colon cancer COLO-205 cell line with an IC value of 0.

View Article and Find Full Text PDF

A Rationale for Drug Design Provided by Co-Crystal Structure of IC261 in Complex with Tubulin.

Molecules

February 2021

Department of Clinical Research Management, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China.

Microtubules composed of α/β tubulin heterodimers are an essential part of the cytoskeleton of eukaryotic cells and are widely regarded as targets for cancer chemotherapy. IC261, which is discovered as an ATP-competitive inhibitor of serine/threonine-specific casein kinase 1 (CK1), has shown its inhibitory activity on microtubule polymerization in recent studies. However, the structural information of the interaction between tubulin and IC261 is still unclear.

View Article and Find Full Text PDF

The ubiquitously expressed serine/threonine specific casein kinase 1 (CK1) family plays important roles in the regulation of various physiological processes. Small-molecule inhibitors, such as the CK1δ/ε selectively inhibitor IC261, have been used to antagonize CK1 phosphorylation events in cells in many studies. Here we present data to show that, similarly to the microtubule destabilizing agent nocodazole, IC261 depolymerizes microtubules in interphase cells.

View Article and Find Full Text PDF

Casein kinase 1 delta and epsilon (CK1δ/ɛ) are key regulators of diverse cellular growth and survival processes including Wnt signaling, DNA repair and circadian rhythms. Recent studies suggest that they have an important role in oncogenesis. RNA interference screens identified CK1ɛ as a pro-survival factor in cancer cells in vitro and the CK1δ/ɛ-specific inhibitor IC261 is remarkably effective at selective, synthetic lethal killing of cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!